119 resultados para spinal canal
em Université de Lausanne, Switzerland
Resumo:
INTRODUCTION: The presence of a pre-existing narrow spinal canal may have an important place in the ethiopathogenesis of lumbar spinal stenosis. By consequence the study of the development of the spinal canal is crucial. The first goal of this work is to do a comprehensive literature search and to give an essential view on the development of spinal canal and its depending factors studied until now. The second goal is to give some considerations and hypothesize new leads for clinically useful researches. MATERIALS AND METHODS: A bibliographical research was executed using different search engines: PubMed, Google Schoolar ©, Ovid ® and Web Of Science ©. Free sources and avaible from the University of Lausanne (UNIL) and Centre Hospitalier Universitaire Vaudois (CHUV) were used. At the end of the bibliographic researches 114 references were found, 85 were free access and just 41 were cited in this work. Most of the found references are in English or in French. RESULTS AND DISCUSSION: The spinal canal is principally limited by the vertebrae which have a mesodermal origin. The nervous (ectodermal) tissue significantly influences the growth of the canal. The most important structure participating in the spinal canal growth is the neurocentral synchondrosis in almost the entire vertebral column. The fusion of the half posterior arches seems to have less importance for the canal size. The growth is not homogeneous but, depends on the vertebral level. Timing, rate and growth potentials differ by regions. Especially in the case of the lumbar segment, there is a craniocaudal tendency which entails a greater post-natal catch-up growth for distal vertebrae. Trefoil-shape of the L5 canal is the consequence of a sagittal growth deficiency. The spinal canal shares some developmental characteristics with different structures and systems, especially with the central nervous system. It may be the consequence of the embryological origin. It is supposed that not all the related structures would be affected by a growth impairment because of the different catch-up potentials. Studies found that narrower spinal canals might be related with cardiovascular and gastrointestinal symptoms, lower thymic function, bone mineral content, dental hypoplasia and Harris' lines. Anthropometric correlations found at birth disappear during the pediatric age. All factors which can affect bone and nervous growth might be relevant. Genetic predispositions are the only factors that can never be changed but the real impact is to ascertain. During the antenatal period, all the elements determining a good supply of blood and oxygen may influence the vertebral canal development, for example smoking during pregnancy. Diet is a crucial factor having an impact on both antenatal and postnatal growth. Proteins intake is the only proved dietetic relationship found in the bibliographic research of this work. The mechanical effects due to locomotion changes are unknown. Socioeconomic situation has an impact on several influencing factors and it is difficult to study it owing to numerous bias. CONCLUSIONS: A correct growth of spinal canal is evidently relevant to prevent not-degenerative stenotic conditions. But a "congenital" narrower canal may aggravate degenerative stenosis. This concerns specific groups of patient. If the size of the canal is highly involved in the pathogenesis of common back pains, a hypothetical measure to prevent developmental impairments could have a not- negligible impact on the society. It would be interesting to study more about dietetic necessities for a good spinal canal development. Understanding the relationship between nervous tissues and vertebra it might be useful in identifying what is needed for the ideal development. Genetic importance and the post-natal influences of upright standing on the canal growth remain unsolved questions. All these tracks may have a double purpose: knowing if it is possible to decrease the incidence of narrower spinal canal and consequently finding possible preventive measures. The development of vertebral canal is a complex subject which ranges over a wide variety of fields. The knowledge of this subject is an indispensable tool to understand and hypothesize the influencing factors that might lead to stenotic conditions. Unfortunately, a lack of information makes difficult to have a complete and satisfactory interdisciplinary vision.
Resumo:
STUDY DESIGN: Computed tomography-based anatomical study. OBJECTIVE: To study the secular changes in lumbar spinal canal dimensions. SUMMARY OF BACKGROUND DATA: Development of symptomatic lumbar spinal stenosis, among other factors, is related to the dimensions of the bony canal. The canal reaches its adult size early on in life. Several factors, including protein intake, may influence its final dimensions. As with increases in human stature from improvements of socioeconomic conditions, we hypothesized that adult bony canal size has also grown larger in recent generations. METHODS: This study analyzes computed tomographic reconstructions from 184 subjects performed for either trauma (n = 81) or abdominal pathologies (n = 103) and born either between 1940 and 1949 (n = 88) or 1970 and 1979 (n = 96). The cross-sectional area of the bony canal was digitally measured at the level of the pedicle (i.e., at a level not influenced by degenerative changes) for each lumbar vertebra. Intra- and interobserver reliability was assessed. RESULTS: Intra- and interobserver measurement reliability were excellent (interclass correlation coefficient = 0.87) and good (interclass correlation coefficient = 0.61), respectively. Contrary to our hypothesis, the 1940-1949 generation patient group exhibited larger lumbar canals at all levels as compared with the 1970-1979 group. Statistically this difference was highly significant (P < 0.001) and particularly pronounced in the trauma subgroup. CONCLUSION: Given that human stature evolution has stabilized and adult height is established during the first 2 years of long bone growth, it is possible that antenatal factors are responsible for this surprising finding. Maternal smoking and age may be possible explanations. This finding may have significant implications. An increasing number of patients may emerge with lumbar spinal stenosis as degenerative changes develop, putting a strain on health resources. Further studies in different population groups and countries will be important to further confirm this trend. LEVEL OF EVIDENCE: 3.
Resumo:
Introduction: Measures of the degree of lumbar spinal stenosis (LSS) such as antero-posterior diameter of the canal, and dural sac cross sectional area vary, and do not correlate with symptoms or results of surgery. We created a grading system, comprised of seven categories, based on the morphology of the dural sac and its contents as seen on T2 axial images. The categories take into account the ratio of rootlet/ CSF content. Grade A indicates no significant compression, grade D is equivalent to a total myelograhic block. We compared this classification with commonly used criteria of severity of stenosis. Methods: Fifty T2 axial MRI images taken at disc level from 27 symptomatic LSS patients undergoing decompressive surgery were classified twice by two radiologists and three spinal surgeons working at different institutions and countries. Dural sac cross-sectional surface area and AP diameter of the canal were measured both at disc and pedicle level from DICOM images using OsiriX software. Intraand inter-observer reliability were assessed using Cohen's, Fleiss' kappa statistics, and t test. Results: For the morphological grading the average intra-and inter observer kappas were 0.76 and 0.69+, respectively, for physicians working in the study originating country. Combining all observers the kappa values were 0.57 ± 0.19. and 0.44 ± 0.19, respectively. AP diameter and dural sac cross-sectional area measurements showed no statistically significant differences between observers. No correlation between morphological grading and AP diameter or dural sac crosssectional areawas observed in 13 (26%) and 8 cases (16%), respectively. Discussion: The proposed morphological grading relies on the identification of the dural sac and CSF better seen on full MRI series. This was not available to the external observers, which might explain the lower overall kappa values. Since no specific measurement tools are needed the grading suits everyday clinical practice and favours communication of degree of stenosis between practising physicians. The absence of a strict correlation with the dural sac surface suggests that measuring the surface alone might be insufficient in defining LSS as it is essentially a mismatch between the spinal canal and its contents. This grading is now adopted in our unit and further studies concentrating on relation between morphology, clinical symptoms and surgical results are underway.
Resumo:
Purpose: To compare the additional informations obtainedwith axial and sagittal T2 weighted with fat saturation(T2FS) and T1 weighted with Gadolinium iv sequenceswith fat saturation (T1FSGd) to detect degenerativeinflammatory lumbar spine lesions.Materials and Methods: Our retrospective study included73 patients (365 lumbar levels) with lumbar spinedegenerative disease (25 males, 48 females, mean age56 years). MRI protocol was performed with T1 and T2weighted sagittal and T2 weighted axial sequences(standard protocol), axial and sagittal T2FS and T1FSGd.Images were independently analyzed by two musculoskeletalradiologists and a neurosurgeon. Two groups ofsequences were analyzed: standard + T2FS sequences(group 1), standard + T1FSGd sequences (group 2).Degenerative inflammatory lumbar spine lesions werenoted at each level in: anterior column (vertebralendplate), spinal canal (epidural and peri-radicular fat)and posterior column (facet joint with capsular recessand subchondral bone).Results: Degenerative inflammatory lesions were present in18% (66/365) of levels in group 1, and 48% (175/365) oflevels in group 2. In details, lesions were noted in group 1 and2 respectively:-in 44 and 66 levels for anterior column,-in22 and 131 levels for posterior column,-in 0 and 36 levelsfor spinal canal. All these differences were statisticallysignificant. Intra and Interobserver agreements were good.Conclusion: The T1FSGd sequence is more sensitive thanT2FS to show the degenerative inflammatory lumbar spinelesions, especially in spinal canal and posterior column.
Resumo:
Introduction: Clinical symptoms and degree of spinal stenosis based on cross sectional dural sac area correlate only weakly in lumbar spinal stenosis (LSS) patients. We conceived a four grade classification system (A, B, C & D) based on the morphology of the dural sac and its contents as seen on T2 axial MRI images. The categories take into account the rootlet/CSF ratio. We applied this grading to three patient groups: LSS scheduled for surgery; LSS following conservative treatment and patients with low back pain (LBP) without leg pain. Materials/Methods: A total of 346 T2 axial MRI images taken from LSS and LBP patients were included in this retroperspective study. 37 patients had decompressive surgery (132 MRI images), 31 conservative treatment (116 MRI images) and 27 patients had unspecific LBP (98 MRI images). Dural sac cross-sectional surface area and morphological grading of the canal were measured digitally both at disc and pedicle level. Intra- and inter-observer reliability were assessed (weighted Cohen's kappa statistics) from 50 MRI images taken from the surgery group. Results: At the most severe disc level, grade A (mild stenosis) was found in 3% of MRI images of the surgical group as opposed to 51% in the conservatively treated group and 85% in the LBP group. Grade B occurred in 8% of the surgical, 20% of the conservative and was negligible in LBP group (below 1%). Grade C and D (severe stenosis) was found in 89% of the surgical group, as opposed to 30% in conservative group and 11% in LBP group. The grades of all groups were comparable at the pedicle levels, exhibiting in 94% a grade A with a maximum at the A1 grade. Pedicle and disc level cross-sectional area were smallest in the surgery group and smaller in the conservative group as compared to the LBP group at the levels L2, L3 and L4. According to cross-sectional area measurements patients from the surgery group seems to have smaller vertebral canal although this was not related to smaller stature. Validation of grading: Average intra-and inter observer kappas were 0.76 and 0.69 respectively, for physicians working in the study originating institution. Combining all observers the kappa values were 0.57 +/- 0.19. and 0.44 +/- 0.19 respectively. Dural sac cross-sectional area measurements showed no statistically significant differences between observers. Conclusion: Since no specific measurement tools are needed the grading suits everyday clinical practice and favours communication of degree of stenosis between practising physicians. In our institution Grade A stenosis was less likely to require surgical treatment. This grading can therefore be an aid in surgical patient selection in teaching units.
Resumo:
Introduction: Quantitative measures of degree of lumbar spinal stenosis (LSS) such as antero-posterior diameter of the canal or dural sac cross sectional area vary widely and do not correlate with clinical symptoms or results of surgical decompression. In an effort to improve quantification of stenosis we have developed a grading system based on the morphology of the dural sac and its contents as seen on T2 axial images. The grading comprises seven categories ranging form normal to the most severe stenosis and takes into account the ratio of rootlet/CSF content. Material and methods: Fifty T2 axial MRI images taken at disc level from twenty seven symptomatic lumbar spinal stenosis patients who underwent decompressive surgery were classified into seven categories by five observers and reclassified 2 weeks later by the same investigators. Intra- and inter-observer reliability of the classification were assessed using Cohen's and Fleiss' kappa statistics, respectively. Results: Generally, the morphology grading system itself was well adopted by the observers. Its success in application is strongly influenced by the identification of the dural sac. The average intraobserver Cohen's kappa was 0.53 ± 0.2. The inter-observer Fleiss' kappa was 0.38 ± 0.02 in the first rating and 0.3 ± 0.03 in the second rating repeated after two weeks. Discussion: In this attempt, the teaching of the observers was limited to an introduction to the general idea of the morphology grading system and one example MRI image per category. The identification of the dimension of the dural sac may be a difficult issue in absence of complete T1 T2 MRI image series as it was the case here. The similarity of the CSF to possibly present fat on T2 images was the main reason of mismatch in the assignment of the cases to a category. The Fleiss correlation factors of the five observers are fair and the proposed morphology grading system is promising.
Resumo:
Surgical indications in spinal trauma remain a controversial topic. In general, unstable cervical injuries such as displaced odontoid fractures, burst fractures or tear drop fractures require surgical intervention. Thoracolumbar compression injuries without posterior wall involvement or significant kyphosis can be treated conservatively. Surgery is indicated in fractures-dislocations and burst fractures with significant canal narrowing and/or major kyphosis. The role of emergency decompression as well as that of steroids remain uncertain since no study to date has convincingly proven their efficacy.
Resumo:
Introduction Le canal lombaire étroit symptomatique est de plus en plus fréquent. Le traitement dépend des signes cliniques et des résultats radiologiques. Mais actuellement il n'y a pas de consensus concernant la classification radiologique. Le but de notre article est d'étudier la relation entre deux paramètres morphologiques radiologiques récemment décrits sur des examens par IRM. Le premier est le « signe de sédimentation » (Sedimentation Sign) et le second est le grade morphologique de la sténose lombaire (Morphological Grade), tous deux décrit en 2010. Matériel et méthode Nous avons étudié des examens IRM de 137 patients suivit dans notre établissement. De ces 137, 110 étaient issus d'une base de donnée de patients avec une sténose lombaire dont la Symptomatologie était typique. Dans ce groupe, 73 patients avaient été traité chirurgicalement et 37 conservativement, dépendant de la sévérité des symptômes. Un troisième groupe, le groupe contrôle, était formé de 27 patients ne présentant que des douleurs lombaires basses sans sciatalgie. La sévérité de la sténose a été évaluée sur les examens IRM au niveau du disque en utilisant les 4 grades de la classification morphologique, de A à D. La présence d'un signe de sédimentation a été, quand à lui, notée au niveau du pédicule, au-dessus et au-dessous du niveau présentant la sténose maximale, comme décrit dans l'article original. Résultat La présence d'un signe de sédimentation positif a été observée chez 58% des patients présentant un grade morphologique B, 69% chez les patients avec un grade C et 76% des patients avec un grade D. Dans le groupe de patient traité chirurgicalement pour une sténose canalaire, 67% des patients présentaient un signe de sédimentation positif, 35% dans le groupe du traitement conservateur, et 8 % dans le groupe contrôle. En ce qui concerne la classification du grade morphologique, nous avons regroupé les grade C et D. Il y avait 97% de patients avec un grade C et D dans le groupe du traitement chirurgical, 35 % dans le groupe du traitement conservateur et 18% dans le groupe contrôle. Nous avons donc calculé que la présence d'un signe de sédimentation positif chez les patients avec une sténose lombaire symptomatique augmente le risque d'avoir besoin d'une intervention de l'ordre de 3.5 fois (OR=3.5). En utilisant la classification du grade morphologique, nous avons calculé un risque encore plus élevé. Un patient avec une sténose canalaire de grade C ou D a 65 fois plus de risque d'avoir besoin d'une intervention (OR=65). Conclusion : Les résultats montrent une corrélation entre ces deux paramètres morphologiques. Mais la prédiction du besoin d'une intervention n'est pas équivalente. Un tiers des patients dans le groupe du traitement chirurgical n'avaient pas de signe de sédimentation positif. Ce signe apparaît donc comme un moins bon prédicteur pour le choix du traitement comparé à la sévérité de la sténose jugée avec le grade morphologique (OR 3.5 vs 65).
Resumo:
The straightforward anatomical organisation of the developing and mature rat spinal cord was used to determine and interpret the time of appearance and expression patterns of microtubule-associated proteins (MAP) 1b and 2. Immunoblots revealed the presence of MAP1b and 2 in the early embryonic rat spinal cord and confirmed the specificity of the used anti-MAP mouse monoclonal antibodies. The immunocytochemical data demonstrated a rostral-to-caudal and ventral-to-dorsal gradient in the expression of MAP1b/2 within the developing spinal cord. In the matrix layer, MAP1b was found in a distinct radial pattern distributed between the membrana limitans interna and externa between embryonal day (E)12 and E15. Immunostaining for vimentin revealed that this MAP1b pattern was morphologically and topographically different from the radial glial pattern which was present in the matrix layer between E13 and E19. The ventral-to-dorsal developmental gradient of the MAP1b staining in the spinal cord matrix layer indicates a close involvement of MAP1b either in the organisation of the microtubules in the cytoplasmatic extensions of the proliferating neuroblasts or neuroblast mitosis. MAP2 could not be detected in the developing matrix layer. In the mantle and marginal layer, MAP1b was abundantly present between E12 and postnatal day (P)0. After birth, the staining intensity for MAP1b gradually decreased in both layers towards a faint appearance at maturity. The distribution patterns suggest an involvement of MAP1b in the maturation of the motor neurons, the contralaterally and ipsilaterally projecting axons and the ascending and descending long axons of the rat spinal cord. MAP2 was present in the spinal cord grey matter between E12 and maturity, which reflects a role for MAP2 in the development as well as in the maintenance of microtubules. The present description of the expression patterns of MAP1b and 2 in the developing spinal cord suggests important roles of the two proteins in various morphogenetic events. The findings may serve as the basis for future studies on the function of MAP1b and 2 in the development of the central nervous system.
Resumo:
We report clinical, anthropometric and radiological findings in 4 siblings with a new type of skeletal dysplasia. 4 normally intelligent girls exhibit dwarfism between -3.4 and -4.6 standard deviations with accentuated shortening of the lower limbs, moderate deformity of the vertebral bodies, mildly striated metaphyses, saddle nose, frontal bossing, and relatively large head. The family pedigree suggests autosomal recessive inheritance. We propose the designation of SPONASTRIME dysplasia, derived from spondylar and nasal alterations with striation of the metaphyses.
Resumo:
Energy metabolism measurements in spinal cord tumors, as well as in osseous spinal tumors/metastasis in vivo, are rarely performed only with molecular imaging (MI) by positron emission tomography (PET). This imaging modality developed from a small number of basic clinical science investigations followed by subsequent work that influenced and enhanced the research of others. Apart from precise anatomical localization by coregistration of morphological imaging and quantification, the most intriguing advantage of this imaging is the opportunity to investigate the time course (dynamics) of disease-specific molecular events in the intact organism. Most importantly, MI represents one of the key technologies in translational molecular neuroscience research, helping to develop experimental protocols that may later be applied to human patients. PET may help monitor a patient at the vertebral level after surgery and during adjuvant treatment for recurrent or progressive disease. Common clinical indications for MI of primary or secondary CNS spinal tumors are: (i) tumor diagnosis, (ii) identification of the metabolically active tumor compartments (differentiation of viable tumor tissue from necrosis) and (iii) prediction of treatment response by measurement of tumor perfusion or ischemia. While spinal PET has been used under specific circumstances, a question remains as to whether the magnitude of biochemical alterations observed by MI in CNS tumors in general (specifically spinal tumors) can reveal any prognostic value with respect to survival. MI may be able to better identify early disease and to differentiate benign from malignant lesions than more traditional methods. Moreover, an adequate identification of treatment effectiveness may influence patient management. MI probes could be developed to image the function of targets without disturbing them or as treatment to modify the target's function. MI therefore closes the gap between in vitro and in vivo integrative biology of disease. At the spinal level, MI may help to detect progression or recurrence of metastatic disease after surgical treatment. In cases of nonsurgical treatments such as chemo-, hormone- or radiotherapy, it may better assess biological efficiency than conventional imaging modalities coupled with blood tumor markers. In fact, PET provides a unique possibility to correlate topography and specific metabolic activity, but it requires additional clinical and experimental experience and research to find new indications for primary or secondary spinal tumors.