3 resultados para spin connection
em Université de Lausanne, Switzerland
Resumo:
The Teggiolo zone is the sedimentary cover of the Antigorio nappe, one of the lowest tectonic units of the Penninic Central Alps. Detailed mapping, stratigraphic and structural analyses, and comparisons with less metamorphic series in several well-studied domains of the Alps, provide a new stratigraphic interpretation. The Teggiolo zone is comprised of several sedimentary cycles, separated by erosive surfaces and large stratigraphic gaps, which cover the time span from Triassic to Eocene. At Mid-Jurassic times it appears as an uplifted, partially emergent block, marking the southern limit of the main Helvetic basin (the Limiting South-Helvetic Rise LSHR). The main mass of the Teggiolo calcschists, whose base truncates the Triassic-Jurassic cycles and can erode the Antigorio basement, consists of fine-grained clastic sediments analogous to the deep-water flyschoid deposits of Late Cretaceous to Eocene age in the North-Penninic (or Valais s.l.) basins. Thus the Antigorio-Teggiolo domain occupies a crucial paleogeographic position, on the boundary between the Helvetic and Penninic realms: from Triassic to Early Cretaceous its affinity is with the Helvetic; at the end of Cretaceous it is incorporated into the North-Penninic basins. An unexpected result is the discovery of the important role played by complex formations of wildflysch type at the top of the Teggiolo zone. They contain blocks of various sizes. According to their nature, three different associations are distinguished that have specific vertical and lateral distributions. These blocks give clues to the existence of territories that have disappeared from the present-day level of observation and impose constraints on the kinematics of early folding and embryonic nappe emplacement. Tectonics produced several phases of superimposed folds and schistosities, more in the metasediments than in the gneissic basement. Older deformations that predate the amplification of the frontal hinge of the nappe generated the dominant schistosity and the km-wide Vanzèla isoclinal fold.
Resumo:
The hypocretins, also known as orexins, are two neuropeptides now commonly described as critical components to maintain and regulate the stability of arousal. Several lines of evidence have raised the hypothesis that hypocretin-producing neurons are part of the circuitries that mediate the hypothalamic response to acute stress. Intracerebral administration of hypocretin leads to a dose-related reinstatement of drug and food seeking behaviors. Furthermore, stress-induced reinstatement can be blocked with hypocretin receptor 1 antagonism. These results, together with recent data showing that hypocretin is critically involved in cocaine sensitization through the recruitment of NMDA receptors in the ventral tegmental area, strongly suggest that activation of hypocretin neurons play a critical role in the development of the addiction process. The activity of hypocretin neurons may affect addictive behavior by contributing to brain sensitization or by modulating the brain reward system. Hypocretinergic cells, in coordination with brain stress systems may lead to a vulnerable state that facilitates the resumption of drug seeking behavior. Hence, the hypocretinergic system is a new drug target that may be used to prevent relapse of drug seeking