13 resultados para solar radiation software

em Université de Lausanne, Switzerland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Question: Outdoor occupational exposure could be associated with important cumulative and intense exposure to ultraviolet (UV) solar radiation. Such exposure would increase risk of skin cancer. However, little information exists on jobs associated with intense UV exposure. The objective of this study was to characterise occupational UV exposure in a representative sample in France. Methods: A population-based survey was conducted in May-June 2012 through computer-assisted telephonic interviews in population 25 to 69 years of age. Individual UV irradiation was computed with declared time and place of residence matched to UV records from satellite measurement (Eurosun project). We analysed factors influencing exposure to UV (annual average and seasonal peak). Results: A total of 1442 individuals declared having an occupational exposure to UV which represents 18% of population aged 25 to 69 years. Outdoor workers were more frequently men (58%), aged 40-54 (43%), with a phototype III or IV (69%). Occupations associated with highest UV exposure were: construction workers (annual daily average 62.8 Joules/m2), gardeners (62.6), farmers (52.8), culture/art/social sciences workers (52.0) and transport workers/mail carriers (49.5). The maximum of UVA exposure was found for occupation with a strong seasonality of exposure: culture, art or social sciences works (98.1 Joules/m2), construction works (97.2), gardening (96.7) and farming (95.0). Significant factors associated with high occupational UV exposure were gender (men vs. women: 53.6 vs. 42.6), phototype (IV vs. I: 51.9 vs. 45.5) and taking lunch outdoors (always vs. never: 59.8 vs. 48.6). Conclusion: Our study showed that some occupations were associated with particularly intense UV exposure such as farmers, gardeners, construction workers. Other unexpected occupations were also associated with high UV exposure such as transport workers, mail carriers and culture/art/social sciences workers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Challenging environmental conditions, including heat and humidity, cold, and altitude, pose particular risks to the health of Olympic and other high-level athletes. As a further commitment to athlete safety, the International Olympic Committee (IOC) Medical Commission convened a panel of experts to review the scientific evidence base, reach consensus, and underscore practical safety guidelines and new research priorities regarding the unique environmental challenges Olympic and other international-level athletes face. For non-aquatic events, external thermal load is dependent on ambient temperature, humidity, wind speed and solar radiation, while clothing and protective gear can measurably increase thermal strain and prompt premature fatigue. In swimmers, body heat loss is the direct result of convection at a rate that is proportional to the effective water velocity around the swimmer and the temperature difference between the skin and the water. Other cold exposure and conditions, such as during Alpine skiing, biathlon and other sliding sports, facilitate body heat transfer to the environment, potentially leading to hypothermia and/or frostbite; although metabolic heat production during these activities usually increases well above the rate of body heat loss, and protective clothing and limited exposure time in certain events reduces these clinical risks as well. Most athletic events are held at altitudes that pose little to no health risks; and training exposures are typically brief and well-tolerated. While these and other environment-related threats to performance and safety can be lessened or averted by implementing a variety of individual and event preventative measures, more research and evidence-based guidelines and recommendations are needed. In the mean time, the IOC Medical Commission and International Sport Federations have implemented new guidelines and taken additional steps to mitigate risk even further.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It is generally accepted that most plant populations are locally adapted. Yet, understanding how environmental forces give rise to adaptive genetic variation is a challenge in conservation genetics and crucial to the preservation of species under rapidly changing climatic conditions. Environmental variation, phylogeographic history, and population demographic processes all contribute to spatially structured genetic variation, however few current models attempt to separate these confounding effects. To illustrate the benefits of using a spatially-explicit model for identifying potentially adaptive loci, we compared outlier locus detection methods with a recently-developed landscape genetic approach. We analyzed 157 loci from samples of the alpine herb Gentiana nivalis collected across the European Alps. Principle coordinates of neighbor matrices (PCNM), eigenvectors that quantify multi-scale spatial variation present in a data set, were incorporated into a landscape genetic approach relating AFLP frequencies with 23 environmental variables. Four major findings emerged. 1) Fifteen loci were significantly correlated with at least one predictor variable (R (adj) (2) > 0.5). 2) Models including PCNM variables identified eight more potentially adaptive loci than models run without spatial variables. 3) When compared to outlier detection methods, the landscape genetic approach detected four of the same loci plus 11 additional loci. 4) Temperature, precipitation, and solar radiation were the three major environmental factors driving potentially adaptive genetic variation in G. nivalis. Techniques presented in this paper offer an efficient method for identifying potentially adaptive genetic variation and associated environmental forces of selection, providing an important step forward for the conservation of non-model species under global change.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In several colour polymorphic species, morphs differ in thermoregulation either because dark and pale surfaces absorb solar radiation to a different extent and/or because morphs differ in key metabolic processes. Morph-specific thermoregulation may potentially account for the observation that differently coloured individuals are frequently not randomly distributed among habitats, and differ in many respects, including behaviour, morphology, survival and reproductive success. In a wild population of the colour polymorphic tawny owl Strix aluco, a recent cross-fostering experiment showed that offspring raised and born from red mothers were heavier than those from grey mothers. In the present study, we tested in the same individuals whether these morph-specific offspring growth patterns were associated with a difference in metabolic rate between offspring of red and grey mothers. For this purpose, we measured nestling oxygen consumption under two different temperatures (laboratory measurements: 4 and 20 degrees C), and examined the relationships between these data sets and the colour morph of foster and biological mothers. After controlling for nestling body mass, oxygen consumption at 20 degrees C was greater in foster offspring raised by grey foster mothers. No relationship was found between nestling oxygen consumption and coloration of their biological mother. Therefore, our study indicates that in our experiment offspring raised by grey foster mothers showed not only a lower body mass than offspring raised by red foster mothers, but also consumed more oxygen under warm temperature. This further indicates that rearing conditions in nests of grey mothers were more stressful than in nests of red mothers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

ABSTRACT : Ostracods are benthic microcrustaceans enclosed in low-Mg calcite bivalves. Stable isotope compositions, Mg/Ca, and Sr/Ca ratios of ostracod fossil valves have proven useful to reconstruct past environmental conditions. Yet, several discrepancies persist and the influence of many factors remains unclear. It is the aim of this study to improve the use of ostracod valve geochemistry as palaeoenvironmental proxies by examining the extent of isotope fractionation and trace element partitioning during valve calcification. To achieve this, the environmental parameters (pH, temperature) and chemical composition of water (C-and O-isotope composition and calcium, magnesium, and strontium content) were measured at sites where living ostracods were sampled. The sampling was on a monthly basis over the course of one year at five different water depths (2, 5, 13, 33, and 70 m) in Lake Geneva, Switzerland. The one-year sampling enabled collection of environmental data for bottom and interstitial pore water. In littoral to sublittoral zones, C-isotope composition of DIC and the Mg/Ca and Sr/Ca ratios of water are found to vary concomitantly with water temperature. This is due to the precipitation of calcite, which is induced by higher photosynthetic activity as temperature and/or solar radiation intensify in summer. In deeper zones, environmental parameters remain largely constant throughout the year. Variations of pH, DIC concentrations and C-isotope compositions in interstitial water result from aerobic as well as anaerobic respiration, calcite dissolution and methanogenesis. Bathymetric distribution, life cycles, and habitats were derived for 15 ostracod species and are predominantly related to water temperature and sediment texture. O-isotope compositions of ostracod valves in Lake Geneva reflect that of water and temperature. However, offsets of up to 3 permil are observed in comparison with proposed inorganic calcite precipitation equilibrium composition. Deprotonation of HCO3- and/or salt effect at crystallisation sites may explain the disequilibrium observed for O-isotopic compositions. C-isotope compositions of ostracod valves are not as well constrained and appear to be controlled by a complex interaction between habitat preferences and seasonal as well as spatial variations of the DIC isotope composition. For infaunal forms, C-isotope compositions reflect mainly the variation of DIC isotope composition in interstitial pore waters. For epifaunal forms, C-isotope compositions reflect the seasonal variation of DIC isotope compositions. C-isotope compositions of ostracod valves is at equilibrium with DIC except for a small number of species (L. inopinata, L. sanctipatricii and possibly C. ophtalmica, and I. beauchampi). Trace element uptake differs considerably from species to species. For most epifaunal forms, trace element content follows the seasonal cycle, recording temperature increases and/or variations of Mg/Ca and Sr/Ca ratios of water. In contrast, infaunal forms are predominantly related to sediment pore water chemistry. RÉSUMÉ EN FRANÇAIS : Les ostracodes sont de petits crustacés benthiques qui possèdent une coquille faite de calcite à faible teneur en magnésium. La composition isotopique et les rapports Mg/Ca et Sr/Ca d'ostracodes fossiles ont été utilisés maintes fois avec succès pour effectuer des reconstructions paléoenvironnementales. Néanmoins, certains désaccords persistent sur l'interprétation de ces données. De plus, l'influence de certains facteurs pouvant biaiser le signal reste encore inconnue. Ainsi, le but de cette étude est de rendre plus performant l'emploi de la composition géochimique des ostracodes comme indicateur paléoenvironnemental. Pour réaliser cela, cinq sites situés dans le Léman à 2, 5, 13, 33 et 70 m de profondeur ont été choisis pour effectuer les échantillonnages. Chaque site a été visité une fois par mois durant une année. Les différents paramètres environnementaux (pH, température) ainsi que la composition géochimique de l'eau (composition isotopique de l'oxygène et du carbone ainsi que teneur en calcium, magnésium et strontium) ont été déterminés pour chaque campagne. Des ostracodes vivants ont été récoltés au cinq sites en même temps que les échantillons d'eau. Ce travail de terrain a permis de caractériser la géochimie de l'eau se trouvant juste au-dessus des sédiments ainsi que celle de l'eau se trouvant dans les interstices du sédiment. Dans les zones littorales à sublittorales, la composition isotopique du carbone inorganique dissout (CID) ainsi que les rapports Mg/Ca et Sr/Ca de l'eau varient linéairement avec la température. Ceci peut être expliqué par la précipitation de calcite qui est contrôlée par l'activité photosynthétique, variant elle même linéairement avec la température. Dans les zones plus profondes, les paramètres environnementaux restent relativement constants tout au long de l'année. Les variations du pH, de la concentration et de la composition isotopique du CID dans les sédiments résultent de la libération de carbone engendrée par la dégradation de la matière organique avec présence d'oxygène ou via réduction de nitrates et de sulfates, par la dissolution de carbonates, ainsi que par la méthanogenèse. La distribution bathymétrique, le cycle de vie ainsi que l'habitat de 15 espèces ont été déterminés. Ceux-ci sont principalement reliés à la température de l'eau et à la texture des sédiments. La composition isotopique de l'oxygène des valves d'ostracodes reflète celle de l'eau et la température qui régnait lors de la calcification. Néanmoins, des écarts pouvant aller jusqu'à 3 0/00 par rapport à l'équilibre théorique ont été obtenus. La déprotonation de HCO3 ou un 'effet de sel' pourrait être à l'origine du déséquilibre observé. La composition isotopique du carbone des valves d'ostracodes n'est pas aussi bien cernée. Celle-ci semble être principalement contrôlée par une interaction complexe entre l'habitat des ostracodes et les variations saisonnières et spatiales de la composition isotopique du CID. Pour les espèces endofaunes, la composition isotopique du carbone reflète principalement la variation de la composition isotopique du CID à l'intérieur des sédiments. Pour les formes épifaunes, c'est la variation saisonnière de la composition du CID qui contrôle celle de la coquille des ostracodes. En général, la composition isotopique du carbone des valves d'ostracodes est en équilibre avec celle de CID, hormis pour quelques rares espèces (L. inopinata, L. sanctipatricii et peut-être C. ophtalmica et I. beauchampi). L'incorporation des éléments traces diffère passablement d'une espèce à l'autre. Pour la plupart des espèces épifaunes, la teneur en éléments traces des coquilles reflète les variations saisonnières. Ces espèces semblent enregistrer les variations soit de la température soit des rapports Mg/Ca et Sr/Ca de l'eau. La teneur en élément traces des formes infaunales, au contraire, est principalement reliée à la chimie de l'eau interstitielle. RÉSUMÉ GRAND-PUBLIC : La connaissance de l'évolution du climat dans le futur est primordiale pour notre société, car elle permet de développer différentes stratégies pour faire face aux problèmes engendrés pas le changement climatique : stratégies environnementale, humanitaire, ou encore économique. Cette problématique est actuellement, à juste titre, sujet d'une vive préoccupation. La géologie peut-elle contribuer à l'effort communautaire entrepris? Naturellement, ce sont les climatologues qui sont sur le devant de la scène. Il n'empêche que ces derniers, pour pouvoir prédire l'avenir, doivent s'appuyer sur le passé. La géologie est alors d'un grand intérêt car c'est effectivement la seule science qui permette d'estimer les variations climatiques à grande échelle sur de longues périodes. Ainsi, voulant moi-même contribuer aux recherches menées dans ce domaine, je me suis tourné à la fin de mes études vers la paléoclimatologie, science qui a pour but de reconstruire le climat des temps anciens. Nous nous sommes rendu compte que l'évolution climatique de la région où nous habitons n'avait pas encore fait le sujet d'études approfondies. Il est pourtant important de connaître la variation locale des changements climatiques pour obtenir des modèles climatiques fiables. En conséquence, un vaste projet a vu le jour : reconstruire, à l'aide des sédiments du lac Léman, les variations paléoclimatiques et paléo-environnementales depuis le retrait du Glacier de Rhône, il y a environ 15'000 ans, jusqu'à nos jours. Pour ce genre de travail, la géochimie, qui est une forme de chimie, utilisée en science de la terre regroupant la chimie classique et la chimie isotopique, est une alliée particulièrement efficace. Elle permet en effet, via différentes mesures faites sur des archives géologiques (par exemple des fossiles ou des sédiments) d'obtenir des informations, souvent quantitatives, sur les conditions (le climat, la flore ou encore la bio productivité, etc...) qui régnaient il y a fort longtemps. Les coquilles d'ostracodes, qui sont de petits animaux vivant au fond des lacs, sont une des archives les plus prometteuses. Ces animaux sont des petits crustacés s'entourant d'une coquille calcaire qu'ils sécrètent eux-mêmes. A la mort de l'animal, la coquille est intégrée dans les sédiments et reste intacte à travers les âges. Des études ont montré qu'en analysant la géochimie de ces coquilles fossiles, il est possible de reconstruire les conditions environnementales qui régnaient à l'époque de vie de ces fossiles. Cette démarche nécessite qu'une condition bien précise soit remplie: la composition géochimique de la coquille doit enregistrer de manière fidèle la chimie de l'eau et/ou la température de l'eau présentes au moment de la sécrétion de la coquille. Le but spécifique de notre recherche a précisément été d'étudier la façon dont la chimie de l'eau ainsi que sa température sont enregistrées dans la coquillé des ostracodes. Une fois les relations entre ces divers paramètres dans l'étant actuel du système établies, il sera alors possible de les utiliser pour interpréter des données issues de coquilles fossiles. Pour ce faire, nous avons mesuré la température de l'eau de manière continue et récolté mensuellement des échantillons d'eau et des ostracodes vivants pendant une année. Cinq sites situés à 2, 5, 13, 33 et 70 mètres de profondeur ont été choisis pour effectuer ces échantillonnages dans le Léman. Le travail de terrain nous a amené à étudier la biologie de 15 espèces. Nous avons pu établir la profondeur à laquelle vivent ces animaux, leur période de développement ainsi que leur habitat respectifs. Ces résultats ont permis de mieux cerner la relation qu'il existe entre la chimie de l'eau, sa température et la composition géochimique des coquilles d'ostracodes. Nous avons ainsi pu confirmer que les coquilles d'ostracodes enregistrent de manière fidèle la composition chimique et isotopique de l'eau. De même, nous avons pu établir de manière plus précise l'effet de la température sur la géochimie des coquilles. Néanmoins, les relations trouvées entre ces trois éléments sont plus complexes pour certaines espèces, cette complexité étant souvent liée à un caractère spécifique de leur écologie. Nous avons mis en lumière certains effets qui biaisent les résultats et défini précisément les conditions dans lesquelles on peut s'attendre à avoir des difficultés dans leur interprétation. Maintenant que nous avons établi les relations entre le climat actuel et la composition géochimique des coquilles d'ostracodes actuels, nous pouvons, sur la base de ce modèle, reconstruire le climat depuis le retrait du Glacier du Rhône jusqu'à nos jours à l'aide d'ostracodes fossiles. Mais cela est une autre histoire et fera, je l'espère, le sujet de nos futures recherches.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Climate warming leads to a decrease in biodiversity. Organisms can deal with the new prevailing environmental conditions by one of two main routes, namely evolving new genetic adaptations or through phenotypic plasticity to modify behaviour and physiology. Melanin-based colouration has important functions in animals including a role in camouflage and thermoregulation, protection against UV-radiation and pathogens and, furthermore, genes involved in melanogenesis can pleiotropically regulate behaviour and physiology. In this article, I review the current evidence that differently coloured individuals are differentially sensitive to climate change. Predicting which of dark or pale colour variants (or morphs) will be more penalized by climate change will depend on the adaptive function of melanism in each species as well as how the degree of colouration covaries with behaviour and physiology. For instance, because climate change leads to a rise in temperature and UV-radiation and dark colouration plays a role in UV-protection, dark individuals may be less affected from global warming, if this phenomenon implies more solar radiation particularly in habitats of pale individuals. In contrast, as desertification increases, pale colouration may expand in those regions, whereas dark colourations may expand in regions where humidity is predicted to increase. Dark colouration may be also indirectly selected by climate warming because genes involved in the production of melanin pigments confer resistance to a number of stressful factors including those associated with climate warming. Furthermore, darker melanic individuals are commonly more aggressive than paler conspecifics, and hence they may better cope with competitive interactions due to invading species that expand their range in northern latitudes and at higher altitudes. To conclude, melanin may be a major component involved in adaptation to climate warming, and hence in animal populations melanin-based colouration is likely to change as an evolutionary or plastic response to climate warming.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present models predicting the potential distribution of a threatened ant species, Formica exsecta Nyl., in the Swiss National Park ( SNP). Data to fit the models have been collected according to a random-stratified design with an equal number of replicates per stratum. The basic aim of such a sampling strategy is to allow the formal testing of biological hypotheses about those factors most likely to account for the distribution of the modeled species. The stratifying factors used in this study were: vegetation, slope angle and slope aspect, the latter two being used as surrogates of solar radiation, considered one of the basic requirements of F. exsecta. Results show that, although the basic stratifying predictors account for more than 50% of the deviance, the incorporation of additional non-spatially explicit predictors into the model, as measured in the field, allows for an increased model performance (up to nearly 75%). However, this was not corroborated by permutation tests. Implementation on a national scale was made for one model only, due to the difficulty of obtaining similar predictors on this scale. The resulting map on the national scale suggests that the species might once have had a broader distribution in Switzerland. Reasons for its particular abundance within the SNP might possibly be related to habitat fragmentation and vegetation transformation outside the SNP boundaries.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Challenging environmental conditions, including heat and humidity, cold, and altitude, pose particular risks to the health of Olympic and other high-level athletes. As a further commitment to athlete safety, the International Olympic Committee (IOC) Medical Commission convened a panel of experts to review the scientific evidence base, reach consensus, and underscore practical safety guidelines and new research priorities regarding the unique environmental challenges Olympic and other international-level athletes face. For non-aquatic events, external thermal load is dependent on ambient temperature, humidity, wind speed and solar radiation, while clothing and protective gear can measurably increase thermal strain and prompt premature fatigue. In swimmers, body heat loss is the direct result of convection at a rate that is proportional to the effective water velocity around the swimmer and the temperature difference between the skin and the water. Other cold exposure and conditions, such as during Alpine skiing, biathlon and other sliding sports, facilitate body heat transfer to the environment, potentially leading to hypothermia and/or frostbite; although metabolic heat production during these activities usually increases well above the rate of body heat loss, and protective clothing and limited exposure time in certain events reduces these clinical risks as well. Most athletic events are held at altitudes that pose little to no health risks; and training exposures are typically brief and well-tolerated. While these and other environment-related threats to performance and safety can be lessened or averted by implementing a variety of individual and event preventative measures, more research and evidence-based guidelines and recommendations are needed. In the mean time, the IOC Medical Commission and International Sport Federations have implemented new guidelines and taken additional steps to mitigate risk even further.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The potential ecological impact of ongoing climate change has been much discussed. High mountain ecosystems were identified early on as potentially very sensitive areas. Scenarios of upward species movement and vegetation shift are commonly discussed in the literature. Mountains being characteristically conic in shape, impact scenarios usually assume that a smaller surface area will be available as species move up. However, as the frequency distribution of additional physiographic factors (e.g., slope angle) changes with increasing elevation (e.g., with few gentle slopes available at higher elevation), species migrating upslope may encounter increasingly unsuitable conditions. As a result, many species could suffer severe reduction of their habitat surface, which could in turn affect patterns of biodiversity. In this paper, results from static plant distribution modeling are used to derive climate change impact scenarios in a high mountain environment. Models are adjusted with presence/absence of species. Environmental predictors used are: annual mean air temperature, slope, indices of topographic position, geology, rock cover, modeled permafrost and several indices of solar radiation and snow cover duration. Potential Habitat Distribution maps were drawn for 62 higher plant species, from which three separate climate change impact scenarios were derived. These scenarios show a great range of response, depending on the species and the degree of warming. Alpine species would be at greatest risk of local extinction, whereas species with a large elevation range would run the lowest risk. Limitations of the models and scenarios are further discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Question: Outdoor workers can be exposed to intense ultraviolet (UV) solar radiation likely to results to sunburns. As sunburn is an important risk factor for skin cancer, in particular melanoma, we investigated the causes of occupational sunburns (OS) in French outdoor workers. Methods: A population-based survey was conducted in May-June 2012 through computer-assisted telephonic interviews in population 25 to 69 years of age. History of sunburn from occupational exposure within the year preceding interview was collected. We analysed the risk of OS in multivariate logistic regression. Results: Out of 1442 individuals who declared having an occupational exposure to solar UV radiation, 403 (27.9%) reported a sunburn from occupational exposure in the year preceding the interview. Sunburns were more frequent in women (30% vs. 26.4% in men although not significant p = 0.14), in younger workers (p = 0.0099), in sensitive phototype (40% in phototype I/II vs. 23% in phototype III/IV, p < 0.001) and in workers taking lunch outdoor (p = 0.0355). Some occupations were more associated with OS (more than 30%): health occupations, managing, research/engineering, construction workers and culture/art/social sciences workers. In multivariate analysis, risk factors for OS are phototype (I vs. IV, OR = 4.30 95% CI [2.65-6.98]), sunburn during leisure time (OR = 3.46 95% CI [2.62-4.59]), seasonality of exposure (seasonal vs. constant exposure OR = 1.36 95% CI [1.02-1.81] and annual UVA exposure (OR for 10J/m² daily average increment 1.08 95% CI [1.02-1.14]). In multivariate analysis the type of occupation was not associated with increased OS. Conclusion: Sunburns from occupation was also observed in non sensitive population, phototype IV, which shows that outdoor workers are potentially exposed to intense UV radiations. This study suggests that prevention should target UV sensitive outdoor workers as well as those cumulating intense UV exposure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In lentic water bodies, such as lakes, the water temperature near the surface typically increases during the day, and decreases during the night as a consequence of the diurnal radiative forcing (solar and infrared radiation). These temperature variations penetrate vertically into the water, transported mainly by heat conduction enhanced by eddy diffusion, which may vary due to atmospheric conditions, surface wave breaking, and internal dynamics of the water body. These two processes can be described in terms of an effective thermal diffusivity, which can be experimentally estimated. However, the transparency of the water (depending on turbidity) also allows solar radiation to penetrate below the surface into the water body, where it is locally absorbed (either by the water or by the deployed sensors). This process makes the estimation of effective thermal diffusivity from experimental water temperature profiles more difficult. In this study, we analyze water temperature profiles in a lake with the aim of showing that assessment of the role played by radiative forcing is necessary to estimate the effective thermal diffusivity. To this end we investigate diurnal water temperature fluctuations with depth. We try to quantify the effect of locally absorbed radiation and assess the impact of atmospheric conditions (wind speed, net radiation) on the estimation of the thermal diffusivity. The whole analysis is based on the results of fiber optic distributed temperature sensing, which allows unprecedented high spatial resolution measurements (∼4 mm) of the temperature profile in the water and near the water surface.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

1. Digital elevation models (DEMs) are often used in landscape ecology to retrieve elevation or first derivative terrain attributes such as slope or aspect in the context of species distribution modelling. However, DEM-derived variables are scale-dependent and, given the increasing availability of very high-resolution (VHR) DEMs, their ecological relevancemust be assessed for different spatial resolutions. 2. In a study area located in the Swiss Western Alps, we computed VHR DEMs-derived variables related to morphometry, hydrology and solar radiation. Based on an original spatial resolution of 0.5 m, we generated DEM-derived variables at 1, 2 and 4 mspatial resolutions, applying a Gaussian Pyramid. Their associations with local climatic factors, measured by sensors (direct and ambient air temperature, air humidity and soil moisture) as well as ecological indicators derived fromspecies composition, were assessed with multivariate generalized linearmodels (GLM) andmixed models (GLMM). 3. Specific VHR DEM-derived variables showed significant associations with climatic factors. In addition to slope, aspect and curvature, the underused wetness and ruggedness indices modelledmeasured ambient humidity and soilmoisture, respectively. Remarkably, spatial resolution of VHR DEM-derived variables had a significant influence on models' strength, with coefficients of determination decreasing with coarser resolutions or showing a local optimumwith a 2 mresolution, depending on the variable considered. 4. These results support the relevance of using multi-scale DEM variables to provide surrogates for important climatic variables such as humidity, moisture and temperature, offering suitable alternatives to direct measurements for evolutionary ecology studies at a local scale.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a preliminary study on the degradation of spray paint samples, illustrated by Optical, FTIR and Raman measurements. As opposed to automotive paints which are specifically designed for improved outdoor exposure and protected using hindered amine light absorbers (HALS) and ultra-violet absorbers (UVA), the spray paints on their side are much simpler in composition and very likely to suffer more from joint effects of solar radiation, temperature and humidity. Six different spray paint were exposed to outdoor UV-radiation for a total period of three months and both FTIR and Raman measurements were taken systematically during this time. These results were later compared to an artificial degradation using a climate chamber. For infrared spectroscopy, degradation curves were plotted using the photo-oxidation index (POI), and could be successfully approximated with a logarithmic fitting (R2 > 0.8). The degradation can appear after the first few days of exposure and be important until 2 months, where it stabilizes and follow a more linear trend afterwards. One advantage is that the degradation products appeared almost exclusively at the far end (∼3000 cm−1) of mid-infrared spectra, and that the fingerprint region of the spectra remained stable over the studied period of time. Raman results suggest that the pigments on the other side, are much more stable and have not shown any sign of degradation over the time of this study. Considering the forensic implications of this environmental degradation, care should be taken when comparing samples if weathering is an option (e.g. an exposed graffiti compared to the paint from a fresh spray paint can). Degradation issues should be kept in mind as they may induce significant differences between paint samples of common origin.