4 resultados para soil physical fractions
em Université de Lausanne, Switzerland
Resumo:
The top soil of a 14.5 km(2) region at la Chaux-de-Fonds in the Swiss Jura is exceptionally rich in cadmium. It contains an average of 1.3 mg per kg of soil. The spatial distribution of the metal has no simple pattern that could be explained by atmospheric deposition or agricultural practices. Thin soil contained most of its Cd at the surface; in thicker soil Cd is mainly concentrated between 60 and 80 cm depth. No specific minerals or soil fractions could account for these accumulation, and the vertical distribution of Cd is best explained by leaching from the topsoil and further adsorption within layers of nearly neutral pH. The local Jurassic sedimentary rocks contained too little Cd to account for the Cd concentrations in the soil. Alpine gravels from glacial till were too sparse in soils to explain such a spreading of Cd. Moreover this origin is contradictory with the fact that Cd is concentrated in the sand fraction of soils. The respective distributions of Fe and Cd in soils, and soil fractions, suggested that the spreading of iron nodules accumulated during the siderolithic period (Eocene) was not the main source of Cd. Atmospheric deposition, and spreading of fertiliser or waste from septic tanks seem the only plausible explanation for the Cd concentrations, but at present few factors allow us to differentiate between them.
Resumo:
Oligogalacturonides are structural and regulatory homopolymers from the extracellular pectic matrix of plants. In vitro micromolar concentrations of oligogalacturonates and polygalacturonates were shown previously to stimulate the phosphorylation of a small plasma membrane-associated protein in potato. Immunologically cross-reactive proteins were detected in plasma membrane-enriched fractions from all angiosperm subclasses in the Cronquist system. Polygalacturonate-enhanced phosphorylation of the protein was observed in four of the six dicotyledon subclasses but not in any of the five monocotyledon subclasses. A cDNA for the protein was cloned from potato. The deduced protein is extremely hydrophilic and has a proline-rich N terminus. The C-terminal half of the protein was predicted to be a coiled coil, suggesting that the protein interacts with other macromolecules. The recombinant protein was found to bind both simple and complex galacturonides. The behavior of the protein suggests several parallels with viral proteins involved in intercellular communication.
Resumo:
The water content dynamics in the upper soil surface during evaporation is a key element in land-atmosphere exchanges. Previous experimental studies have suggested that the soil water content increases at the depth of 5 to 15 cm below the soil surface during evapo- ration, while the layer in the immediate vicinity of the soil surface is drying. In this study, the dynamics of water content profiles exposed to solar radiative forcing was monitored at a high temporal resolution using dielectric methods both in the presence and absence of evaporation. A 4-d comparison of reported moisture content in coarse sand in covered and uncovered buckets using a commercial dielectric-based probe (70 MHz ECH2O-5TE, Decagon Devices, Pullman, WA) and the standard 1-GHz time domain reflectometry method. Both sensors reported a positive correlation between temperature and water content in the 5- to 10-cm depth, most pronounced in the morning during heating and in the afternoon during cooling. Such positive correlation might have a physical origin induced by evaporation at the surface and redistribution due to liquid water fluxes resulting from the temperature- gradient dynamics within the sand profile at those depths. Our experimental data suggest that the combined effect of surface evaporation and temperature-gradient dynamics should be considered to analyze experimental soil water profiles. Additional effects related to the frequency of operation and to protocols for temperature compensation of the dielectric sensors may also affect the probes' response during large temperature changes.
Resumo:
Spatial data analysis mapping and visualization is of great importance in various fields: environment, pollution, natural hazards and risks, epidemiology, spatial econometrics, etc. A basic task of spatial mapping is to make predictions based on some empirical data (measurements). A number of state-of-the-art methods can be used for the task: deterministic interpolations, methods of geostatistics: the family of kriging estimators (Deutsch and Journel, 1997), machine learning algorithms such as artificial neural networks (ANN) of different architectures, hybrid ANN-geostatistics models (Kanevski and Maignan, 2004; Kanevski et al., 1996), etc. All the methods mentioned above can be used for solving the problem of spatial data mapping. Environmental empirical data are always contaminated/corrupted by noise, and often with noise of unknown nature. That's one of the reasons why deterministic models can be inconsistent, since they treat the measurements as values of some unknown function that should be interpolated. Kriging estimators treat the measurements as the realization of some spatial randomn process. To obtain the estimation with kriging one has to model the spatial structure of the data: spatial correlation function or (semi-)variogram. This task can be complicated if there is not sufficient number of measurements and variogram is sensitive to outliers and extremes. ANN is a powerful tool, but it also suffers from the number of reasons. of a special type ? multiplayer perceptrons ? are often used as a detrending tool in hybrid (ANN+geostatistics) models (Kanevski and Maignank, 2004). Therefore, development and adaptation of the method that would be nonlinear and robust to noise in measurements, would deal with the small empirical datasets and which has solid mathematical background is of great importance. The present paper deals with such model, based on Statistical Learning Theory (SLT) - Support Vector Regression. SLT is a general mathematical framework devoted to the problem of estimation of the dependencies from empirical data (Hastie et al, 2004; Vapnik, 1998). SLT models for classification - Support Vector Machines - have shown good results on different machine learning tasks. The results of SVM classification of spatial data are also promising (Kanevski et al, 2002). The properties of SVM for regression - Support Vector Regression (SVR) are less studied. First results of the application of SVR for spatial mapping of physical quantities were obtained by the authorsin for mapping of medium porosity (Kanevski et al, 1999), and for mapping of radioactively contaminated territories (Kanevski and Canu, 2000). The present paper is devoted to further understanding of the properties of SVR model for spatial data analysis and mapping. Detailed description of the SVR theory can be found in (Cristianini and Shawe-Taylor, 2000; Smola, 1996) and basic equations for the nonlinear modeling are given in section 2. Section 3 discusses the application of SVR for spatial data mapping on the real case study - soil pollution by Cs137 radionuclide. Section 4 discusses the properties of the modelapplied to noised data or data with outliers.