4 resultados para software distribution in using status
em Université de Lausanne, Switzerland
Resumo:
INTRODUCTION: Solid tumors are known to have an abnormal vasculature that limits the distribution of chemotherapy. We have recently shown that tumor vessel modulation by low-dose photodynamic therapy (L-PDT) could improve the uptake of macromolecular chemotherapeutic agents such as liposomal doxorubicin (Liporubicin) administered subsequently. However, how this occurs is unknown. Convection, the main mechanism for drug transport between the intravascular and extravascular spaces, is mostly related to interstitial fluid pressure (IFP) and tumor blood flow (TBF). Here, we determined the changes of tumor and surrounding lung IFP and TBF before, during, and after vascular L-PDT. We also evaluated the effect of these changes on the distribution of Liporubicin administered intravenously (IV) in a lung sarcoma metastasis model. MATERIALS AND METHODS: A syngeneic methylcholanthrene-induced sarcoma cell line was implanted subpleurally in the lung of Fischer rats. Tumor/surrounding lung IFP and TBF changes induced by L-PDT were determined using the wick-in-needle technique and laser Doppler flowmetry, respectively. The spatial distribution of Liporubicin in tumor and lung tissues following IV drug administration was then assessed in L-PDT-pretreated animals and controls (no L-PDT) by epifluorescence microscopy. RESULTS: L-PDT significantly decreased tumor but not lung IFP compared to controls (no L-PDT) without affecting TBF. These conditions were associated with a significant improvement in Liporubicin distribution in tumor tissues compared to controls (P < .05). DISCUSSION: L-PDT specifically enhanced convection in blood vessels of tumor but not of normal lung tissue, which was associated with a significant improvement of Liporubicin distribution in tumors compared to controls.
Resumo:
Adiponectin is an adipokine, present in the circulation in comparatively high concentrations and different molecular weight isoforms. For the first time, the distribution of these isoforms in serum and follicular fluid (FF) and their usefulness as biological markers for infertility investigations was studied. In vitro study. University based hospital. Fifty-four women undergoing intracytoplasmic sperm injection (ICSI). Oocytes were retrieved, fertilized in vitro using ICSI, and the resulting embryos transferred. Serum was collected immediately prior to oocyte retrieval. Adiponectin isoforms (high molecular weight (HMW), medium and low molecular weight) were determined in serum and FF. Total adiponectin and the different isoform levels were compared with leptin and ovarian steroid concentrations. Adiponectin isoforms in serum and FF. Adiponectin isoform distribution differed between serum and FF; the HMW fraction made up half of all adiponectin in the serum but only 23.3% in the FF. Total and HMW adiponectin in both serum and FF correlated negatively with the body mass index and the concentration of leptin. No correlations were observed for total adiponectin or its isoforms with estradiol, progesterone, anti-Mullerian hormone, inhibin B, or the total follicle stimulating hormone (FSH) dose administered during the ovarian stimulation phase. This study shows for the first time that adiponectin isoform distribution varies between the serum and FF compartments in gonadotropin stimulated patients. A trend towards higher HMW adiponectin serum levels in successful ICSI cycles compared to implantation failures was observed; studies with larger patient groups are required to confirm this observation.
Resumo:
The determination of characteristic cardiac parameters, such as displacement, stress and strain distribution are essential for an understanding of the mechanics of the heart. The calculation of these parameters has been limited until recently by the use of idealised mathematical representations of biventricular geometries and by applying simple material laws. On the basis of 20 short axis heart slices and in consideration of linear and nonlinear material behaviour we have developed a FE model with about 100,000 degrees of freedom. Marching Cubes and Phong's incremental shading technique were used to visualise the three dimensional geometry. In a quasistatic FE analysis continuous distribution of regional stress and strain corresponding to the endsystolic state were calculated. Substantial regional variation of the Von Mises stress and the total strain energy were observed at all levels of the heart model. The results of both the linear elastic model and the model with a nonlinear material description (Mooney-Rivlin) were compared. While the stress distribution and peak stress values were found to be comparable, the displacement vectors obtained with the nonlinear model were generally higher in comparison with the linear elastic case indicating the need to include nonlinear effects.