3 resultados para social ecological models
em Université de Lausanne, Switzerland
Resumo:
Abiotic factors are considered strong drivers of species distribution and assemblages. Yet these spatial patterns are also influenced by biotic interactions. Accounting for competitors or facilitators may improve both the fit and the predictive power of species distribution models (SDMs). We investigated the influence of a dominant species, Empetrum nigrum ssp. hermaphroditum, on the distribution of 34 subordinate species in the tundra of northern Norway. We related SDM parameters of those subordinate species to their functional traits and their co-occurrence patterns with E. hermaphroditum across three spatial scales. By combining both approaches, we sought to understand whether these species may be limited by competitive interactions and/or benefit from habitat conditions created by the dominant species. The model fit and predictive power increased for most species when the frequency of occurrence of E. hermaphroditum was included in the SDMs as a predictor. The largest increase was found for species that 1) co-occur most of the time with E. hermaphroditum, both at large (i.e. 750 m) and small spatial scale (i.e. 2 m) or co-occur with E. hermaphroditum at large scale but not at small scale and 2) have particularly low or high leaf dry matter content (LDMC). Species that do not co-occur with E. hermaphroditum at the smallest scale are generally palatable herbaceous species with low LDMC, thus showing a weak ability to tolerate resource depletion that is directly or indirectly induced by E. hermaphroditum. Species with high LDMC, showing a better aptitude to face resource depletion and grazing, are often found in the proximity of E. hermaphroditum. Our results are consistent with previous findings that both competition and facilitation structure plant distribution and assemblages in the Arctic tundra. The functional and co-occurrence approaches used were complementary and provided a deeper understanding of the observed patterns by refinement of the pool of potential direct and indirect ecological effects of E. hermaphroditum on the distribution of subordinate species. Our correlative study would benefit being complemented by experimental approaches.
Resumo:
Combining theories on social trust and social capital with sociopsychological approaches and applying contextual analyses to Swiss and European survey data, this thesis examines under what circumstances generalised trust, often understood as public good, may not benefit everyone, but instead amplify inequality. The empirical investigation focuses on the Swiss context, but considers different scales of analysis. Two broader questions are addressed. First, might generalised trust imply more or less narrow visions of community and solidarity in different contexts? Applying nonlinear principal component analysis to aggregate indicators, Study 1 explores inclusive and exclusive types of social capital in Europe, measured as regional configurations of generalised trust, civic participation and attitudes towards diversity. Study 2 employs multilevel models to examine how generalised trust, as an individual predisposition and an aggregate climate at the level of Swiss cantons, is linked to equality- directed collective action intention versus radical right support. Second, might high-trust climates impact negatively on disadvantaged members of society, precisely because they reflect a normative discourse of social harmony that impedes recognition of inequality? Study 3 compares how climates of generalised trust at the level of Swiss micro-regions and subjective perceptions of neighbourhood cohesion moderate the negative relationship between socio-economic disadvantage and mental health. Overall, demonstrating beneficial, as well as counterintuitive effects of social trust, this thesis proposes a critical and contextualised approach to the sources and dynamics of social cohesion in democratic societies. -- Cette thèse combine des théories sur le capital social et la confiance sociale avec des approches psychosociales et s'appuie sur des analyses contextuelles de données d'enquêtes suisses et européennes, afin d'étudier dans quelles circonstances la confiance généralisée, souvent présentée comme un bien public, pourrait ne pas bénéficier à tout le monde, mais amplifier les inégalités. Les études empiriques, centrées sur le contexte suisse, intègrent différentes échelles d'analyse et investiguent deux questions principales. Premièrement, la confiance généralisée implique-t-elle des visions plus ou moins restrictives de la communauté et de la solidarité selon le contexte? Dans l'étude 1, une analyse à composantes principales non-linéaire sur des indicateurs agrégés permet d'explorer des types de capital social inclusif et exclusif en Europe, mesurés par des configurations régionales de confiance généralisée, de participation civique, et d'attitudes envers la diversité. L'étude 2 utilise des modèles multiniveaux afin d'analyser comment la confiance généralisée, en tant que prédisposition individuelle et climat agrégé au niveau des cantons suisses, est associée à l'intention de participer à des actions collectives en faveur de l'égalité ou, au contraire, à l'intention de voter pour la droite radicale. Deuxièmement, des climats de haute confiance peuvent-ils avoir un impact négatif sur des membres désavantagés de la société, précisément parce qu'ils reflètent un discours normatif d'harmonie sociale qui empêche la reconnaissance des inégalités? L'étude 3 analyse comment des climats de confiance au niveau des micro-régions suisses et la perception subjective de faire partie d'un environnement cohésif modèrent la relation négative entre le désavantage socio-économique et la santé mentale. En démontrant des effets bénéfiques mais aussi contre-intuitifs de la confiance sociale, cette thèse propose une approche critique et contextualisée des sources et dynamiques de la cohésion sociale dans les sociétés démocratiques.
Resumo:
In this article, we show how the use of state-of-the-art methods in computer science based on machine perception and learning allows the unobtrusive capture and automated analysis of interpersonal behavior in real time (social sensing). Given the high ecological validity of the behavioral sensing, the ease of behavioral-cue extraction for large groups over long observation periods in the field, the possibility of investigating completely new research questions, and the ability to provide people with immediate feedback on behavior, social sensing will fundamentally impact psychology.