8 resultados para slät banderollväv
em Université de Lausanne, Switzerland
Resumo:
The purpose of this study was to evaluate the intraocular pressure (IOP)-lowering effect of modified goniopuncture with the 532-nm Nd : YAG selective laser trabeculoplasty (SLT) laser on eyes after deep sclerectomy with collagen implant (DSCI). This was an interventional cased series. The effects of modified goniopuncture on eyes with insufficient IOP-lowering after DSCI were observed. Goniopuncture was performed using a Q-switched, frequency-doubled 532-nm Nd : YAG laser (SLT-goniopuncture, SLT-G). Outcome measures were amount of IOP-lowering and rapidity of decrease after laser intervention. In all, 10 eyes of 10 patients with a mean age of 71.0±7.7 (SD) years were treated with SLT-G. The mean time of SLT-G after DSCI procedure was 7.1±10.9 months. SLT-G decreased IOP from an average of 16.1±3.4 mm Hg to 14.2±2.8 mm Hg (after 15 min), 13.6±3.9 mm Hg (at 1 day), 12.5±4.1 mm Hg (at 1 month), and 12.6±2.5 (at 6 months) (P<0.0125). There were no complications related to the intervention. Patients in this series achieved an average 22.5% of IOP reduction after SLT-G. The use of the SLT laser appears to be an effective and safe alternative to the traditional Nd : YAG laser for goniopuncture in eyes after DSCI, with potential advantages related to non-perforation of trabeculo-descemet's membrane (TDM).
Resumo:
Au cours des 240 dernières années, 53 mouvements de versant se sont produits le long du promontoire de Québec, causant la mort de 88 personnes principalement lors de chutes de blocs. En octobre 2004, un petit éboulement a atteint la route dans une zone proche de l'éboulement de 1889 qui a tué 35 personnes et blessé 30 autres. Une image 3D a été créée par l'utilisation d'un scanner Lidar terrestre (SLT). Les sept familles de joints identifiées sont en accord avec les mesures effectuées dans de précédentes études. L'imagerie SLT a aussi permit d'estimer les volumes des instabilités passées et d'en analyser le mécanisme : un glissement rocheux qui affecte des blocs débités en parallélépipèdes par d'autres familles de joints. De plus la zone étudiée montre qu'elle est favorable aux chutes de blocs.
Resumo:
According to the most widely accepted Cattell-Horn-Carroll (CHC) model of intelligence measurement, each subtest score of the Wechsler Intelligence Scale for Adults (3rd ed.; WAIS-III) should reflect both 1st- and 2nd-order factors (i.e., 4 or 5 broad abilities and 1 general factor). To disentangle the contribution of each factor, we applied a Schmid-Leiman orthogonalization transformation (SLT) to the standardization data published in the French technical manual for the WAIS-III. Results showed that the general factor accounted for 63% of the common variance and that the specific contributions of the 1st-order factors were weak (4.7%-15.9%). We also addressed this issue by using confirmatory factor analysis. Results indicated that the bifactor model (with 1st-order group and general factors) better fit the data than did the traditional higher order structure. Models based on the CHC framework were also tested. Results indicated that a higher order CHC model showed a better fit than did the classical 4-factor model; however, the WAIS bifactor structure was the most adequate. We recommend that users do not discount the Full Scale IQ when interpreting the index scores of the WAIS-III because the general factor accounts for the bulk of the common variance in the French WAIS-III. The 4 index scores cannot be considered to reflect only broad ability because they include a strong contribution of the general factor.
Resumo:
Recently, kernel-based Machine Learning methods have gained great popularity in many data analysis and data mining fields: pattern recognition, biocomputing, speech and vision, engineering, remote sensing etc. The paper describes the use of kernel methods to approach the processing of large datasets from environmental monitoring networks. Several typical problems of the environmental sciences and their solutions provided by kernel-based methods are considered: classification of categorical data (soil type classification), mapping of environmental and pollution continuous information (pollution of soil by radionuclides), mapping with auxiliary information (climatic data from Aral Sea region). The promising developments, such as automatic emergency hot spot detection and monitoring network optimization are discussed as well.
Resumo:
In recent years there has been an explosive growth in the development of adaptive and data driven methods. One of the efficient and data-driven approaches is based on statistical learning theory (Vapnik 1998). The theory is based on Structural Risk Minimisation (SRM) principle and has a solid statistical background. When applying SRM we are trying not only to reduce training error ? to fit the available data with a model, but also to reduce the complexity of the model and to reduce generalisation error. Many nonlinear learning procedures recently developed in neural networks and statistics can be understood and interpreted in terms of the structural risk minimisation inductive principle. A recent methodology based on SRM is called Support Vector Machines (SVM). At present SLT is still under intensive development and SVM find new areas of application (www.kernel-machines.org). SVM develop robust and non linear data models with excellent generalisation abilities that is very important both for monitoring and forecasting. SVM are extremely good when input space is high dimensional and training data set i not big enough to develop corresponding nonlinear model. Moreover, SVM use only support vectors to derive decision boundaries. It opens a way to sampling optimization, estimation of noise in data, quantification of data redundancy etc. Presentation of SVM for spatially distributed data is given in (Kanevski and Maignan 2004).
Resumo:
Summary Detection, analysis and monitoring of slope movements by high-resolution digital elevation modelsSlope movements, such as rockfalls, rockslides, shallow landslides or debris flows, are frequent in many mountainous areas. These natural hazards endanger the inhabitants and infrastructures making it necessary to assess the hazard and risk caused by these phenomena. This PhD thesis explores various approaches using digital elevation models (DEMs) - and particularly high-resolution DEMs created by aerial or terrestrial laser scanning (TLS) - that contribute to the assessment of slope movement hazard at regional and local scales.The regional detection of areas prone to rockfalls and large rockslides uses different morphologic criteria or geometric instability factors derived from DEMs, i.e. the steepness of the slope, the presence of discontinuities, which enable a sliding mechanism, and the denudation potential. The combination of these factors leads to a map of susceptibility to rockfall initiation that is in good agreement with field studies as shown with the example of the Little Mill Campground area (Utah, USA). Another case study in the Illgraben catchment in the Swiss Alps highlighted the link between areas with a high denudation potential and actual rockfall areas.Techniques for a detailed analysis and characterization of slope movements based on high-resolution DEMs have been developed for specific, localized sites, i.e. ancient slide scars, present active instabilities or potential slope instabilities. The analysis of the site's characteristics mainly focuses on rock slopes and includes structural analyses (orientation of discontinuities); estimation of spacing, persistence and roughness of discontinuities; failure mechanisms based on the structural setting; and volume calculations. For the volume estimation a new 3D approach was tested to reconstruct the topography before a landslide or to construct the basal failure surface of an active or potential instability. The rockslides at Åknes, Tafjord and Rundefjellet in western Norway were principally used as study sites to develop and test the different techniques.The monitoring of slope instabilities investigated in this PhD thesis is essentially based on multitemporal (or sequential) high-resolution DEMs, in particular sequential point clouds acquired by TLS. The changes in the topography due to slope movements can be detected and quantified by sequential TLS datasets, notably by shortest distance comparisons revealing the 3D slope movements over the entire region of interest. A detailed analysis of rock slope movements is based on the affine transformation between an initial and a final state of the rock mass and its decomposition into translational and rotational movements. Monitoring using TLS was very successful on the fast-moving Eiger rockslide in the Swiss Alps, but also on the active rockslides of Åknes and Nordnesfjellet (northern Norway). One of the main achievements on the Eiger and Aknes rockslides is to combine the site's morphology and structural setting with the measured slope movements to produce coherent instability models. Both case studies also highlighted a strong control of the structures in the rock mass on the sliding directions. TLS was also used to monitor slope movements in soils, such as landslides in sensitive clays in Québec (Canada), shallow landslides on river banks (Sorge River, Switzerland) and a debris flow channel (Illgraben).The PhD thesis underlines the broad uses of high-resolution DEMs and especially of TLS in the detection, analysis and monitoring of slope movements. Future studies should explore in more depth the different techniques and approaches developed and used in this PhD, improve them and better integrate the findings in current hazard assessment practices and in slope stability models.Résumé Détection, analyse et surveillance de mouvements de versant à l'aide de modèles numériques de terrain de haute résolutionDes mouvements de versant, tels que des chutes de blocs, glissements de terrain ou laves torrentielles, sont fréquents dans des régions montagneuses et mettent en danger les habitants et les infrastructures ce qui rend nécessaire d'évaluer le danger et le risque causé par ces phénomènes naturels. Ce travail de thèse explore diverses approches qui utilisent des modèles numériques de terrain (MNT) et surtout des MNT de haute résolution créés par scanner laser terrestre (SLT) ou aérien - et qui contribuent à l'évaluation du danger de mouvements de versant à l'échelle régionale et locale.La détection régionale de zones propices aux chutes de blocs ou aux éboulements utilise plusieurs critères morphologiques dérivés d'un MNT, tels que la pente, la présence de discontinuités qui permettent un mécanisme de glissement ou le potentiel de dénudation. La combinaison de ces facteurs d'instabilité mène vers une carte de susceptibilité aux chutes de blocs qui est en accord avec des travaux de terrain comme démontré avec l'exemple du Little Mill Campground (Utah, États-Unis). Un autre cas d'étude - l'Illgraben dans les Alpes valaisannes - a mis en évidence le lien entre les zones à fort potentiel de dénudation et les sources effectives de chutes de blocs et d'éboulements.Des techniques pour l'analyse et la caractérisation détaillée de mouvements de versant basées sur des MNT de haute résolution ont été développées pour des sites spécifiques et localisés, comme par exemple des cicatrices d'anciens éboulements et des instabilités actives ou potentielles. Cette analyse se focalise principalement sur des pentes rocheuses et comprend l'analyse structurale (orientation des discontinuités); l'estimation de l'espacement, la persistance et la rugosité des discontinuités; l'établissement des mécanismes de rupture; et le calcul de volumes. Pour cela une nouvelle approche a été testée en rétablissant la topographie antérieure au glissement ou en construisant la surface de rupture d'instabilités actuelles ou potentielles. Les glissements rocheux d'Åknes, Tafjord et Rundefjellet en Norvège ont été surtout utilisés comme cas d'étude pour développer et tester les diverses approches. La surveillance d'instabilités de versant effectuée dans cette thèse de doctorat est essentiellement basée sur des MNT de haute résolution multi-temporels (ou séquentiels), en particulier des nuages de points séquentiels acquis par SLT. Les changements topographiques dus aux mouvements de versant peuvent être détectés et quantifiés sur l'ensemble d'un glissement, notamment par comparaisons des distances les plus courtes entre deux nuages de points. L'analyse détaillée des mouvements est basée sur la transformation affine entre la position initiale et finale d'un bloc et sa décomposition en mouvements translationnels et rotationnels. La surveillance par SLT a démontré son potentiel avec l'effondrement d'un pan de l'Eiger dans les Alpes suisses, mais aussi aux glissements rocheux d'Aknes et Nordnesfjellet en Norvège. Une des principales avancées à l'Eiger et à Aknes est la création de modèles d'instabilité cohérents en combinant la morphologie et l'agencement structural des sites avec les mesures de déplacements. Ces deux cas d'étude ont aussi démontré le fort contrôle des structures existantes dans le massif rocheux sur les directions de glissement. Le SLT a également été utilisé pour surveiller des glissements dans des terrains meubles comme dans les argiles sensibles au Québec (Canada), sur les berges de la rivière Sorge en Suisse et dans le chenal à laves torrentielles de l'Illgraben.Cette thèse de doctorat souligne le vaste champ d'applications des MNT de haute résolution et particulièrement du SLT dans la détection, l'analyse et la surveillance des mouvements de versant. Des études futures devraient explorer plus en profondeur les différentes techniques et approches développées, les améliorer et mieux les intégrer dans des pratiques actuelles d'analyse de danger et surtout dans la modélisation de stabilité des versants.
Resumo:
Spatial data analysis mapping and visualization is of great importance in various fields: environment, pollution, natural hazards and risks, epidemiology, spatial econometrics, etc. A basic task of spatial mapping is to make predictions based on some empirical data (measurements). A number of state-of-the-art methods can be used for the task: deterministic interpolations, methods of geostatistics: the family of kriging estimators (Deutsch and Journel, 1997), machine learning algorithms such as artificial neural networks (ANN) of different architectures, hybrid ANN-geostatistics models (Kanevski and Maignan, 2004; Kanevski et al., 1996), etc. All the methods mentioned above can be used for solving the problem of spatial data mapping. Environmental empirical data are always contaminated/corrupted by noise, and often with noise of unknown nature. That's one of the reasons why deterministic models can be inconsistent, since they treat the measurements as values of some unknown function that should be interpolated. Kriging estimators treat the measurements as the realization of some spatial randomn process. To obtain the estimation with kriging one has to model the spatial structure of the data: spatial correlation function or (semi-)variogram. This task can be complicated if there is not sufficient number of measurements and variogram is sensitive to outliers and extremes. ANN is a powerful tool, but it also suffers from the number of reasons. of a special type ? multiplayer perceptrons ? are often used as a detrending tool in hybrid (ANN+geostatistics) models (Kanevski and Maignank, 2004). Therefore, development and adaptation of the method that would be nonlinear and robust to noise in measurements, would deal with the small empirical datasets and which has solid mathematical background is of great importance. The present paper deals with such model, based on Statistical Learning Theory (SLT) - Support Vector Regression. SLT is a general mathematical framework devoted to the problem of estimation of the dependencies from empirical data (Hastie et al, 2004; Vapnik, 1998). SLT models for classification - Support Vector Machines - have shown good results on different machine learning tasks. The results of SVM classification of spatial data are also promising (Kanevski et al, 2002). The properties of SVM for regression - Support Vector Regression (SVR) are less studied. First results of the application of SVR for spatial mapping of physical quantities were obtained by the authorsin for mapping of medium porosity (Kanevski et al, 1999), and for mapping of radioactively contaminated territories (Kanevski and Canu, 2000). The present paper is devoted to further understanding of the properties of SVR model for spatial data analysis and mapping. Detailed description of the SVR theory can be found in (Cristianini and Shawe-Taylor, 2000; Smola, 1996) and basic equations for the nonlinear modeling are given in section 2. Section 3 discusses the application of SVR for spatial data mapping on the real case study - soil pollution by Cs137 radionuclide. Section 4 discusses the properties of the modelapplied to noised data or data with outliers.
Resumo:
BACKGROUND: Selective laser trabeculoplasty (SLT) is a relatively new treatment strategy for the treatment of glaucoma. Its principle is similar to that of argon laser trabeculoplasty (ALT), but may lead to less damage to the trabecular meshwork. METHODS: We assessed the 2-year efficacy of SLT in a noncomparative consecutive case series. Any adult patient either suspected of having glaucoma or with open-angle glaucoma, whose treatment was judged insufficient to reach target intraocular pressure (IOP), could be recruited. IOP and number of glaucoma treatments were recorded over 2 years after the procedure. RESULTS: Our sample consisted of 44 consecutive eyes of 26 patients, aged 69+/-8 years. Eyes were treated initially on the lower 180 degrees . Three of them were retreated after 15 days on the upper 180. Fourteen eyes had ocular hypertension, 17 primary open-angle/normal-tension glaucoma, 11 pseudoexfoliation (PEX) glaucoma, and two pigmentary glaucoma. Thirty-six eyes had previously been treated and continued to be treated with topical anti-glaucoma medication, ten had had prior ALT, nine iridotomy, and 12 filtering surgery. The 2-year-follow up could not be completed for eight eyes because they needed filtering surgery. In the remaining 36 eyes, IOP decreased by a mean of 17.2%, 3.3 mmHg, (19.2+/-4.7 to 15+/-3.6 mmHg) after 2 years (p<0.001). As a secondary outcome, the number of glaucoma treatments decreased from 1.44 to 1.36 drops/patient. Other results according to subgroups of patients are analyzed: the greatest IOP decrease occurred in eyes that had never been treated with anti-glaucoma medication or with PEX glaucoma. SLT was probably valuable in a few eyes after filtering surgery; however, the statistical power of the study was not strong enough to draw a firm conclusion. When expressed in survival curves after 2 years, however, only 48% and 41% of eyes experienced a decrease of more than 3 mmHg or more than 20% of preoperative intraocular pressure, respectively. CONCLUSION: SLT decreases IOP somewhat for at least 2 years without an increase in topical glaucoma treatment. However, it cannot totally replace topical glaucoma treatment. In the future, patient selection should be improved to decrease the cost/effectiveness ratio.