5 resultados para skull ontogeny
em Université de Lausanne, Switzerland
Resumo:
Resection of midline skull base lesions involve approaches needing extensive neurovascular manipulation. Transnasal endoscopic approach (TEA) is minimally invasive and ideal for certain selected lesions of the anterior skull base. A thorough knowledge of endonasal endoscopic anatomy is essential to be well versed with its surgical applications and this is possible only by dedicated cadaveric dissections. The goal in this study was to understand endoscopic anatomy of the orbital apex, petrous apex and the pterygopalatine fossa. Six cadaveric heads (3 injected and 3 non injected) and 12 sides, were dissected using a TEA outlining systematically, the steps of surgical dissection and the landmarks encountered. Dissection done by the "2 nostril, 4 hands" technique, allows better transnasal instrumentation with two surgeons working in unison with each other. The main surgical landmarks for the orbital apex are the carotid artery protuberance in the lateral sphenoid wall, optic nerve canal, lateral optico-carotid recess, optic strut and the V2 nerve. Orbital apex includes structures passing through the superior and inferior orbital fissure and the optic nerve canal. Vidian nerve canal and the V2 are important landmarks for the petrous apex. Identification of the sphenopalatine artery, V2 and foramen rotundum are important during dissection of the pterygopalatine fossa. In conclusion, the major potential advantage of TEA to the skull base is that it provides a direct anatomical route to the lesion without traversing any major neurovascular structures, as against the open transcranial approaches which involve more neurovascular manipulation and brain retraction. Obviously, these approaches require close cooperation and collaboration between otorhinolaryngologists and neurosurgeons.
Resumo:
BACKGROUND: Intra-specific variation in melanocyte pigmentation, common in the animal kingdom, has caught the eye of naturalists and biologists for centuries. In vertebrates, dark, eumelanin pigmentation is often genetically determined and associated with various behavioral and physiological traits, suggesting that the genes involved in melanism have far reaching pleiotropic effects. The mechanisms linking these traits remain poorly understood, and the potential involvement of developmental processes occurring in the brain early in life has not been investigated. We examined the ontogeny of rapid eye movement (REM) sleep, a state involved in brain development, in a wild population of barn owls (Tyto alba) exhibiting inter-individual variation in melanism and covarying traits. In addition to sleep, we measured melanistic feather spots and the expression of a gene in the feather follicles implicated in melanism (PCSK2). RESULTS: As in mammals, REM sleep declined with age across a period of brain development in owlets. In addition, inter-individual variation in REM sleep around this developmental trajectory was predicted by variation in PCSK2 expression in the feather follicles, with individuals expressing higher levels exhibiting a more precocial pattern characterized by less REM sleep. Finally, PCSK2 expression was positively correlated with feather spotting. CONCLUSIONS: We demonstrate that the pace of brain development, as reflected in age-related changes in REM sleep, covaries with the peripheral activation of the melanocortin system. Given its role in brain development, variation in nestling REM sleep may lead to variation in adult brain organization, and thereby contribute to the behavioral and physiological differences observed between adults expressing different degrees of melanism.
Resumo:
Plasmacytoid dendritic cells (pDCs) were first described as interferon-producing cells and, for many years, their overlapping characteristics with both lymphocytes and classical dendritic cells (cDCs) created confusion over their exact ontogeny. In this Viewpoint article, Nature Reviews Immunology asks five leaders in the field to discuss their thoughts on the development and functions of pDCs--do these cells serve mainly as a major source of type I interferons or do they also make other important contributions to immune responses?
Resumo:
There are only a few studies on the ontogeny and differentiation process of the hypothalamic supraoptic-paraventriculo-neurohypophysial neurosecretory system. In vitro neuron survival improves if cells are of embryonic origin; however, surviving hypothalamic neurons in culture were found to express small and minimal amounts of arginine-vasopressin (AVP) and oxytocin (OT), respectively. The aim of this study was to develop a primary neuronal culture design applicable to the study of magnocellular hypothalamic system functionality. For this purpose, a primary neuronal culture was set up after mechanical dissociation of sterile hypothalamic blocks from 17-day-old Sprague-Dawley rat embryos (E17) of both sexes. Isolated hypothalamic cells were cultured with supplemented (B27)-NeuroBasal medium containing an agent inhibiting non-neuron cell proliferation. The neurosecretory process was characterized by detecting AVP and OT secreted into the medium on different days of culture. Data indicate that spontaneous AVP and OT release occurred in a culture day-dependent fashion, being maximal on day 13 for AVP, and on day 10 for OT. Interestingly, brain-derived neurotrophic factor (BDNF) and Angiotensin II (A II) were able to positively modulate neuropeptide output. Furthermore, on day 17 of culture, non-specific (high-KCl) and specific (Angiotensin II) stimuli were able to significantly (P < 0.05) enhance the secretion of both neuropeptides over respective baselines. This study suggests that our experimental design is useful for the study of AVP- and OT-ergic neuron functionality and that BDNF and A II are positive modulators of embryonic hypothalamic cell development.
Resumo:
Le self est une notion polysémique qui fait l'objet d'un consensus relatif dans plusieurs domaines, dont la psychologie du développement. Elle rend compte de la faculté de s'éprouver le même au fil du temps et de distinguer le « je » qui regarde du « moi » regardé. C'est le garant d'un sens de soi plus ou moins cohérent au fil du temps, en dépit des changements qui surviennent au cours de la vie. Le self combine des processus de réflexivité et d'intersubjectivité. Nous en avons analysé trois composantes fonctionnelles : la mémoire de travail, la mémoire épisodique et la narration, à partir d'un protocole expérimental témoignant de son ontogenèse chez des enfants de 6 à 9 ans (n=24 répartis en deux groupes de 6‐7 et 8-9 ans). Nous avons créé le « jeu informatique du lutin » qui propose un parcours semiorienté dans un monde imaginaire. C'est une narration de soi, opérant la mise en sens des temporalités et des espaces auxquels les événements se réfèrent. Deux semaines après cette « aventure », on recueille la narration des souvenirs épisodiques de cette histoire. Nous avons également utilisé un test de mémoire de travail visuospatiale non verbale. Des différences développementales affectent les dimensions narratives de la mémoire de l'épisode du jeu, comme l'efficacité de la mémoire de travail visuospatiale. Ces développements témoignent d'une augmentation de « l'épaisseur temporelle de la conscience» entre 6 et 9 ans. L'épaisseur de la conscience renvoie fondamentalement à la faculté du self de vivre le temps dans une cyclicité incluant le passé, le présent et le futur anticipé. Le développment observé élargit les possibilités de mettre en lien des mémoires et des scénarios futurs, tout comme les mises en sens des relations aux autres et à soi-même. Self is a polysemic concept of common use in various scientific fields, among which developmental psychology. It accounts for the capacity to maintain the conviction to be « oneself », always the same through circumstances and throughout my life. This important function contributes in maintaining coherence and some sorte of Ariadne's thread in memory. To analyse the ontogeny of the self, we have focused upon three components : working memory, episodic memory and narration in children aged between 6 and 9 years. We used a non verbal working memory task. It was completed by a video game specially designed for our purpose, in which children were engaged in moving an elf in a landscape changing through seasons, in order to deliver a princess from a mischievous wizard. Two weeks after the game, the children had to tell what happened while they moved the elf. It is a self-narrative that creates a link‐up of temporality and spaces to which the events refer. The narrated episode was assessed for its coherence and continuity dimensions. Developmental differences affect the narrative dimensions of the memory of the episode of the game, as the effectiveness of visuospatial working memory. These developments show an increase in "temporal thickness of consciousness" between 6 and 9 years. The thickness of consciousness basically refers to the ability of the self to live in a cyclical time including past, present and anticipated future. The observed development broadens the possibilities to link memories and future scenarios, like setting sense of relations with others and with oneself.