31 resultados para simulation methods
em Université de Lausanne, Switzerland
Resumo:
Recognition by the T-cell receptor (TCR) of immunogenic peptides presented by class I major histocompatibility complexes (MHCs) is the determining event in the specific cellular immune response against virus-infected cells or tumor cells. It is of great interest, therefore, to elucidate the molecular principles upon which the selectivity of a TCR is based. These principles can in turn be used to design therapeutic approaches, such as peptide-based immunotherapies of cancer. In this study, free energy simulation methods are used to analyze the binding free energy difference of a particular TCR (A6) for a wild-type peptide (Tax) and a mutant peptide (Tax P6A), both presented in HLA A2. The computed free energy difference is 2.9 kcal/mol, in good agreement with the experimental value. This makes possible the use of the simulation results for obtaining an understanding of the origin of the free energy difference which was not available from the experimental results. A free energy component analysis makes possible the decomposition of the free energy difference between the binding of the wild-type and mutant peptide into its components. Of particular interest is the fact that better solvation of the mutant peptide when bound to the MHC molecule is an important contribution to the greater affinity of the TCR for the latter. The results make possible identification of the residues of the TCR which are important for the selectivity. This provides an understanding of the molecular principles that govern the recognition. The possibility of using free energy simulations in designing peptide derivatives for cancer immunotherapy is briefly discussed.
Resumo:
Objectives: Gentamicin is one of the most commonly prescribed antibiotics for suspected or proven infection in newborns. Because of age-associated (pre- and post- natal) changes in body composition and organ function, large interindividual variability in gentamicin drug levels exists, thus requiring a close monitoring of this drug due to its narrow therapeutic index. We aimed to investigate clinical and demographic factors influencing gentamicin pharmacokinetics (PK) in a large cohort of unselected newborns and to explore optimal regimen based on simulation. Methods: All gentamicin concentration data from newborns treated at the University Hospital Center of Lausanne between December 2006 and October 2011 were retrieved. Gentamicin concentrations were measured within the frame of a routine therapeutic drug monitoring program, in which 2 concentrations (at 1h and 12h) are systematically collected after the first administered dose, and a few additional concentrations are sampled along the treatment course. A population PK analysis was performed by comparing various structural models, and the effect of clinical and demographic factors on gentamicin disposition was explored using NONMEM®. Results: A total of 3039 concentrations collected in 994 preterm (median gestational age 32.3 weeks, range 24.2-36.5 weeks) and 455 term newborns were used in the analysis. Most of the data (86%) were sampled after the first dose (C1 h and C12 h). A two-compartment model best characterized gentamicin PK. Average clearance (CL) was 0.044 L/h/kg (CV 25%), central volume of distribution (Vc) 0.442 L/kg (CV 18%), intercompartmental clearance (Q) 0.040 L/h/kg and peripheral volume of distribution (Vp) 0.122 L/kg. Body weight, gestational age and postnatal age positively influenced CL. The use of both gestational age and postnatal age better predicted CL than postmenstrual age alone. CL was affected by dopamine and furosemide administration and non-significantly by indometacin. Body weight, gestational age and dopamine coadminstration significantly influenced Vc. Model based simulation confirms that preterm infants need higher dose, superior to 4 mg/kg, and extended interval dosage regimen to achieve adequate concentration. Conclusions: This study, performed on a very large cohort of neonates, identified important factors influencing gentamicin PK. The model will serve to elaborate a Bayesian tool for dosage individualization based on a single measurement.
Resumo:
In recent years there has been growing interest in the question of how the particular topology of polymeric chains affects their overall dimensions and physical behavior. The majority of relevant studies are based on numerical simulation methods or analytical treatment; however, both these approaches depend on various assumptions and simplifications. Experimental verification is clearly needed but was hampered by practical difficulties in obtaining preparative amounts of knotted or catenated polymers with predefined topology and precisely set chain length. We introduce here an efficient method of production of various single-stranded DNA knots and catenanes that have the same global chain length. We also characterize electrophoretic migration of the produced single-stranded DNA knots and catenanes with increasing complexity.
Resumo:
Nowadays, genome-wide association studies (GWAS) and genomic selection (GS) methods which use genome-wide marker data for phenotype prediction are of much potential interest in plant breeding. However, to our knowledge, no studies have been performed yet on the predictive ability of these methods for structured traits when using training populations with high levels of genetic diversity. Such an example of a highly heterozygous, perennial species is grapevine. The present study compares the accuracy of models based on GWAS or GS alone, or in combination, for predicting simple or complex traits, linked or not with population structure. In order to explore the relevance of these methods in this context, we performed simulations using approx 90,000 SNPs on a population of 3,000 individuals structured into three groups and corresponding to published diversity grapevine data. To estimate the parameters of the prediction models, we defined four training populations of 1,000 individuals, corresponding to these three groups and a core collection. Finally, to estimate the accuracy of the models, we also simulated four breeding populations of 200 individuals. Although prediction accuracy was low when breeding populations were too distant from the training populations, high accuracy levels were obtained using the sole core-collection as training population. The highest prediction accuracy was obtained (up to 0.9) using the combined GWAS-GS model. We thus recommend using the combined prediction model and a core-collection as training population for grapevine breeding or for other important economic crops with the same characteristics.
Resumo:
Connectivity analysis on diffusion MRI data of the whole- brain suffers from distortions caused by the standard echo- planar imaging acquisition strategies. These images show characteristic geometrical deformations and signal destruction that are an important drawback limiting the success of tractography algorithms. Several retrospective correction techniques are readily available. In this work, we use a digital phantom designed for the evaluation of connectivity pipelines. We subject the phantom to a âeurooetheoretically correctâeuro and plausible deformation that resembles the artifact under investigation. We correct data back, with three standard methodologies (namely fieldmap-based, reversed encoding-based, and registration- based). Finally, we rank the methods based on their geometrical accuracy, the dropout compensation, and their impact on the resulting connectivity matrices.
Ab initio modeling and molecular dynamics simulation of the alpha 1b-adrenergic receptor activation.
Resumo:
This work describes the ab initio procedure employed to build an activation model for the alpha 1b-adrenergic receptor (alpha 1b-AR). The first version of the model was progressively modified and complicated by means of a many-step iterative procedure characterized by the employment of experimental validations of the model in each upgrading step. A combined simulated (molecular dynamics) and experimental mutagenesis approach was used to determine the structural and dynamic features characterizing the inactive and active states of alpha 1b-AR. The latest version of the model has been successfully challenged with respect to its ability to interpret and predict the functional properties of a large number of mutants. The iterative approach employed to describe alpha 1b-AR activation in terms of molecular structure and dynamics allows further complications of the model to allow prediction and interpretation of an ever-increasing number of experimental data.
Resumo:
Knowledge of the spatial distribution of hydraulic conductivity (K) within an aquifer is critical for reliable predictions of solute transport and the development of effective groundwater management and/or remediation strategies. While core analyses and hydraulic logging can provide highly detailed information, such information is inherently localized around boreholes that tend to be sparsely distributed throughout the aquifer volume. Conversely, larger-scale hydraulic experiments like pumping and tracer tests provide relatively low-resolution estimates of K in the investigated subsurface region. As a result, traditional hydrogeological measurement techniques contain a gap in terms of spatial resolution and coverage, and they are often alone inadequate for characterizing heterogeneous aquifers. Geophysical methods have the potential to bridge this gap. The recent increased interest in the application of geophysical methods to hydrogeological problems is clearly evidenced by the formation and rapid growth of the domain of hydrogeophysics over the past decade (e.g., Rubin and Hubbard, 2005).
Resumo:
Background : In the present article, we propose an alternative method for dealing with negative affectivity (NA) biases in research, while investigating the association between a deleterious psychosocial environment at work and poor mental health. First, we investigated how strong NA must be to cause an observed correlation between the independent and dependent variables. Second, we subjectively assessed whether NA can have a large enough impact on a large enough number of subjects to invalidate the observed correlations between dependent and independent variables.Methods : We simulated 10,000 populations of 300 subjects each, using the marginal distribution of workers in an actual population that had answered the Siegrist's questionnaire on effort and reward imbalance (ERI) and the General Health Questionnaire (GHQ).Results : The results of the present study suggested that simulated NA has a minimal effect on the mean scores for effort and reward. However, the correlations between the effort and reward imbalance (ERI) ratio and the GHQ score might be important, even in simulated populations with a limited NA.Conclusions : When investigating the relationship between the ERI ratio and the GHQ score, we suggest the following rules for the interpretation of the results: correlations with an explained variance of 5% and below should be considered with caution; correlations with an explained variance between 5% and 10% may result from NA, although this effect does not seem likely; and correlations with an explained variance of 10% and above are not likely to be the result of NA biases. [Authors]
Resumo:
Computational modeling has become a widely used tool for unraveling the mechanisms of higher level cooperative cell behavior during vascular morphogenesis. However, experimenting with published simulation models or adding new assumptions to those models can be daunting for novice and even for experienced computational scientists. Here, we present a step-by-step, practical tutorial for building cell-based simulations of vascular morphogenesis using the Tissue Simulation Toolkit (TST). The TST is a freely available, open-source C++ library for developing simulations with the two-dimensional cellular Potts model, a stochastic, agent-based framework to simulate collective cell behavior. We will show the basic use of the TST to simulate and experiment with published simulations of vascular network formation. Then, we will present step-by-step instructions and explanations for building a recent simulation model of tumor angiogenesis. Demonstrated mechanisms include cell-cell adhesion, chemotaxis, cell elongation, haptotaxis, and haptokinesis.
Resumo:
Objectives: Several population pharmacokinetic (PPK) and pharmacokinetic-pharmacodynamic (PK-PD) analyses have been performed with the anticancer drug imatinib. Inspired by the approach of meta-analysis, we aimed to compare and combine results from published studies in a useful way - in particular for improving the clinical interpretation of imatinib concentration measurements in the scope of therapeutic drug monitoring (TDM). Methods: Original PPK analyses and PK-PD studies (PK surrogate: trough concentration Cmin; PD outcomes: optimal early response and specific adverse events) were searched systematically on MEDLINE. From each identified PPK model, a predicted concentration distribution under standard dosage was derived through 1000 simulations (NONMEM), after standardizing model parameters to common covariates. A "reference range" was calculated from pooled simulated concentrations in a semi-quantitative approach (without specific weighting) over the whole dosing interval. Meta-regression summarized relationships between Cmin and optimal/suboptimal early treatment response. Results: 9 PPK models and 6 relevant PK-PD reports in CML patients were identified. Model-based predicted median Cmin ranged from 555 to 1388 ng/ml (grand median: 870 ng/ml and inter-quartile range: 520-1390 ng/ml). The probability to achieve optimal early response was predicted to increase from 60 to 85% from 520 to 1390 ng/ml across PK-PD studies (odds ratio for doubling Cmin: 2.7). Reporting of specific adverse events was too heterogeneous to perform a regression analysis. The general frequency of anemia, rash and fluid retention increased however consistently with Cmin, but less than response probability. Conclusions: Predicted drug exposure may differ substantially between various PPK analyses. In this review, heterogeneity was mainly attributed to 2 "outlying" models. The established reference range seems to cover the range where both good efficacy and acceptable tolerance are expected for most patients. TDM guided dose adjustment appears therefore justified for imatinib in CML patients. Its usefulness remains now to be prospectively validated in a randomized trial.
Resumo:
BACKGROUND: The ambition of most molecular biologists is the understanding of the intricate network of molecular interactions that control biological systems. As scientists uncover the components and the connectivity of these networks, it becomes possible to study their dynamical behavior as a whole and discover what is the specific role of each of their components. Since the behavior of a network is by no means intuitive, it becomes necessary to use computational models to understand its behavior and to be able to make predictions about it. Unfortunately, most current computational models describe small networks due to the scarcity of kinetic data available. To overcome this problem, we previously published a methodology to convert a signaling network into a dynamical system, even in the total absence of kinetic information. In this paper we present a software implementation of such methodology. RESULTS: We developed SQUAD, a software for the dynamic simulation of signaling networks using the standardized qualitative dynamical systems approach. SQUAD converts the network into a discrete dynamical system, and it uses a binary decision diagram algorithm to identify all the steady states of the system. Then, the software creates a continuous dynamical system and localizes its steady states which are located near the steady states of the discrete system. The software permits to make simulations on the continuous system, allowing for the modification of several parameters. Importantly, SQUAD includes a framework for perturbing networks in a manner similar to what is performed in experimental laboratory protocols, for example by activating receptors or knocking out molecular components. Using this software we have been able to successfully reproduce the behavior of the regulatory network implicated in T-helper cell differentiation. CONCLUSION: The simulation of regulatory networks aims at predicting the behavior of a whole system when subject to stimuli, such as drugs, or determine the role of specific components within the network. The predictions can then be used to interpret and/or drive laboratory experiments. SQUAD provides a user-friendly graphical interface, accessible to both computational and experimental biologists for the fast qualitative simulation of large regulatory networks for which kinetic data is not necessarily available.
Resumo:
We extend PML theory to account for information on the conditional moments up to order four, but without assuming a parametric model, to avoid a risk of misspecification of the conditional distribution. The key statistical tool is the quartic exponential family, which allows us to generalize the PML2 and QGPML1 methods proposed in Gourieroux et al. (1984) to PML4 and QGPML2 methods, respectively. An asymptotic theory is developed. The key numerical tool that we use is the Gauss-Freud integration scheme that solves a computational problem that has previously been raised in several fields. Simulation exercises demonstrate the feasibility and robustness of the methods [Authors]
Resumo:
Le modèle développé à l'Institut universitaire de médecine sociale et préventive de Lausanne utilise un programme informatique pour simuler les mouvements d'entrées et de sorties des hôpitaux de soins généraux. Cette simulation se fonde sur les données récoltées de routine dans les hôpitaux; elle tient notamment compte de certaines variations journalières et saisonnières, du nombre d'entrées, ainsi que du "Case-Mix" de l'hôpital, c'est-à-dire de la répartition des cas selon les groupes cliniques et l'âge des patients.
Resumo:
OBJECTIVES: Human papillomavirus (HPV) is a sexually transmitted infection of particular interest because of its high prevalence rate and strong causal association with cervical cancer. Two prophylactic vaccines have been developed and different countries have made or will soon make recommendations for the vaccination of girls. Even if there is a consensus to recommend a vaccination before the beginning of sexual activity, there are, however, large discrepancies between countries concerning the perceived usefulness of a catch-up procedure and of boosters. The main objective of this article is to simulate the impact on different vaccination policies upon the mid- and long-term HPV 16/18 age-specific infection rates. METHODS: We developed an epidemiological model based on the susceptible-infective-recovered approach using Swiss data. The mid- and long-term impact of different vaccination scenarios was then compared. RESULTS: The generalization of a catch-up procedure is always beneficial, whatever its extent. Moreover, pending on the length of the protection offered by the vaccine, boosters will also be very useful. CONCLUSIONS: To be really effective, a vaccination campaign against HPV infection should at least include a catch-up to early reach a drop in HPV 16/18 prevalence, and maybe boosters. Otherwise, the protection insured for women in their 20s could be lower than expected, resulting in higher risks to later develop cervical cancer.