125 resultados para silicone derivative
em Université de Lausanne, Switzerland
Resumo:
Retroviral transfer of T cell antigen receptor (TCR) genes selected by circumventing tolerance to broad tumor- and leukemia-associated antigens in human leukocyte antigen (HLA)-A*0201 (A2.1) transgenic (Tg) mice allows the therapeutic reprogramming of human T lymphocytes. Using a human CD8 x A2.1/Kb mouse derived TCR specific for natural peptide-A2.1 (pA2.1) complexes comprising residues 81-88 of the human homolog of the murine double-minute 2 oncoprotein, MDM2(81-88), we found that the heterodimeric CD8 alpha beta coreceptor, but not normally expressed homodimeric CD8 alpha alpha, is required for tetramer binding and functional redirection of TCR- transduced human T cells. CD8+T cells that received a humanized derivative of the MDM2 TCR bound pA2.1 tetramers only in the presence of an anti-human-CD8 anti-body and required more peptide than wild-type (WT) MDM2 TCR+T cells to mount equivalent cytotoxicity. They were, however, sufficiently effective in recognizing malignant targets including fresh leukemia cells. Most efficient expression of transduced TCR in human T lymphocytes was governed by mouse as compared to human constant (C) alphabeta domains, as demonstrated with partially humanized and murinized TCR of primary mouse and human origin, respectively. We further observed a reciprocal relationship between the level of Tg WT mouse relative to natural human TCR expression, resulting in T cells with decreased normal human cell surface TCR. In contrast, natural human TCR display remained unaffected after delivery of the humanized MDM2 TCR. These results provide important insights into the molecular basis of TCR gene therapy of malignant disease.
Resumo:
The molecular basis of glycopeptide-intermediate S. aureus (GISA) isolates is not well defined though frequently involves phenotypes such as thickened cell walls and decreased autolysis. We have exploited an isogenic pair of teicoplanin-susceptible (strain MRGR3) and teicoplanin-resistant (strain 14-4) methicillin-resistant S. aureus strains for detailed transcriptomic profiling and analysis of altered autolytic properties. Strain 14-4 displayed markedly deficient Triton X-100-triggered autolysis compared to its teicoplanin-susceptible parent, although microarray analysis paradoxically did not reveal significant reductions in expression levels of major autolytic genes atl, lytM, and lytN, except for sle1, which showed a slight decrease. The most important paradox was a more-than-twofold increase in expression of the cidABC operon in 14-4 compared to MRGR3, which was correlated with decreased expression of autolysis negative regulators lytSR and lrgAB. In contrast, the autolysis-deficient phenotype of 14-4 was correlated with both increased expression of negative autolysis regulators (arlRS, mgrA, and sarA) and decreased expression of positive regulators (agr RNAII and RNAIII). Quantitative bacteriolytic assays and zymographic analysis of concentrated culture supernatants showed a striking reduction in Atl-derived, extracellular bacteriolytic hydrolase activities in 14-4 compared to MRGR3. This observed difference was independent of the source of cell wall substrate (MRGR3 or 14-4) used for analysis. Collectively, our results suggest that altered autolytic properties in 14-4 are apparently not driven by significant changes in the transcription of key autolytic effectors. Instead, our analysis points to alternate regulatory mechanisms that impact autolysis effectors which may include changes in posttranscriptional processing or export.
Resumo:
The radicality of wound debridement is an important feature of the surgical treatment of pressure sores. Several methods such as injection of methylene blue or hydrogen peroxide have been proposed to facilitate and optimise the surgical debridement technique, but none of them proved to be sufficient. We present an innovative modification of the pseudo-tumour technique consisting in the injection of fluid silicone. Vulcanisation of the silicone leads to pressure-sore moulding, permitting a more radical and sterile excision. In a series of 10 paraplegic patients presenting with ischial pressure sores, silicone moulding was used to facilitate debridement. Radical en bloc debridement was achieved in all patients. After a minimal follow-up of 2 years, no complications and recurrences occurred. A three-dimensional (3D) analysis of the silicone prints objectified the pyramidal shape of ischial pressure sores. Our study showed that complete resection without capsular lesion can be easily achieved. Further, it allows the surgeon to analyse the shape and size of the resected defect, which might be helpful to select the appropriate defect coverage technique.
Resumo:
The preparation of a novel radioiodination reagent, the (aminooxy)acetyl derivative of (p-[125]-iodophenyl)ethylamine, is described. Conventional radioiodination of proteins involves the formation of iodotyrosine residues, but for in vivo applications such as thyroid or stomach immunoscintigraphy, the susceptibility of these residues to tissue dehalogenases constitutes a serious disadvantage. Using our new compound, which has a particularly nonreactive aromatic ring, we confirm and extend studies published by other workers indicating the much greater in vivo stability of iodophenyl compounds compared to the more conventional iodophenolic ones. In addition, the aminooxy group of our reagent gives a stable and specific linkage to aldehyde groups formed by periodate oxidation on the sugar moiety of antibody molecules. In vitro, favorable binding activity and high stability was obtained with a (([125I]iodoaryl)amino)oxy labeled monoclonal antibody directed against carcinoembryonic antigen. In vivo, using paired labeling experiments in nude mice bearing colon carcinoma xenografts, the (([125I]iodoaryl)amino)oxy-MAb (MAb = monoclonal antibody) was compared with the same MAb 131I-labeled by conventional chloramine-T method. Tumor 125I concentration of (arylamino)oxy MAb (measured as percent injected dose per gram) was significantly higher as compared to values obtained with a conventionally labeled 131I antibody. Additionally, thyroid uptake, an indicator of iodine release from the antibody, was up to 25 times lower after injection of 125I-MAb obtained by the new method as compared to the conventionally iodinated 131I-MAb.
Resumo:
We describe the preparation of the modified chelator aminooxyacetyl-ferrioxamine, and the replacement of its iron atom by 67Ga at high specific activity. The aminooxy function of this compound was allowed to react with the aldehyde groups generated by the periodate oxidation of the oligosaccharide of a mouse IgG1 monoclonal antibody (MAb) directed against carcino-embryonic antigen (CEA). The use of the aminooxy group allowed a stable bond to be formed between the chelon and the antibody with no need for reduction. Iron was removed from the ferrioxamine moiety and replaced by 67Ga either before or after conjugation of the chelon to the antibody. In either case the labelled antibody was injected into nude mice bearing a human colon carcinoma having the appropriate antigenicity. Unoxidized antibody, labelled with 125I by conventional methods, was co-injected as an internal control. Additional control experiments were carried out with a non-immune IgG using the same 67Ga-labelled modified chelon as above. The in vivo distribution of the modified antibodies was evaluated at various times between 24 and 96 hr after injection. The methods used were gamma-camera imaging and, more quantitatively, gamma-counting of the various organs after dissection. Interestingly, with the metal-chelon-labelled antibody, the intensity and specificity of tumor labelling was comparable and in some cases superior to the results obtained with radio-iodinated antibody. In particular, there was almost no increase in liver and spleen uptake of radioactive metal relative to radio-iodine, contrary to what has been observed with most antibodies labelled with 111In after conjugation with DTPA.
Resumo:
The impact of biocontrol strain Pseudomonas fluorescens CHA0 and of its genetically modified, antibiotic-overproducing derivative CHA0/pME3424 on a reconstructed population of the plant-beneficial Sinorhizobium meliloti bacteria was assessed in gnotobiotic systems. In sterile soil, the final density of the reconstructed S. meliloti population decreased by more than one order of magnitude in the presence of either of the Pseudomonas strains when compared to a control without addition of P. fluorescens. Moreover, there was a change in the proportion of each individual S. meliloti strain within the population. Plant tests also revealed changes in the nodulating S. meliloti population in the presence of strains CHA0 or CHA0/pME3424. In both treatments one S. meliloti strain, f43, was significantly reduced in its root nodule occupancy. Analysis of alfalfa yields showed a slight but statistically significant increase in shoot dry weight when strain CHA0 was added to the reconstructed S. meliloti population whereas no such effect was observed with CHA0/pME3424.
Resumo:
To study the interaction of T cell receptor with its ligand, a complex of a major histocompatibility complex molecule and a peptide, we derived H-2Kd-restricted cytolytic T lymphocyte clones from mice immunized with a Plasmodium berghei circumsporozoite peptide (PbCS) 252-260 (SYIPSAEKI) derivative containing photoreactive Nepsilon-[4-azidobenzoyl] lysine in place of Pro-255. This residue and Lys-259 were essential parts of the epitope recognized by these clones. Most of the clones expressed BV1S1A1 encoded beta chains along with specific complementary determining region (CDR) 3beta regions but diverse alpha chain sequences. Surprisingly, all T cell receptors were preferentially photoaffinity labeled on the alpha chain. For a representative T cell receptor, the photoaffinity labeled site was located in the Valpha C-strand. Computer modeling suggested the presence of a hydrophobic pocket, which is formed by parts of the Valpha/Jalpha C-, F-, and G-strands and adjacent CDR3alpha residues and structured to be able to avidly bind the photoreactive ligand side chain. We previously found that a T cell receptor specific for a PbCS peptide derivative containing this photoreactive side chain in position 259 similarly used a hydrophobic pocket located between the junctional CDR3 loops. We propose that this nonpolar domain in these locations allow T cell receptors to avidly and specifically bind epitopes containing non-peptidic side chains.
Resumo:
Aggregation-prone polyglutamine (polyQ) expansion proteins cause several neurodegenerative disorders, including Huntington disease. The pharmacological activation of cellular stress responses could be a new strategy to combat protein conformational diseases. Hydroxylamine derivatives act as co-inducers of heat-shock proteins (HSPs) and can enhance HSP expression in diseased cells, without significant adverse effects. Here, we used Caenorhabditis elegans expressing polyQ expansions with 35 glutamines fused to the yellow fluorescent protein (Q35-YFP) in body wall muscle cells as a model system to investigate the effects of treatment with a novel hydroxylamine derivative, NG-094, on the progression of polyQ diseases. NG-094 significantly ameliorated polyQ-mediated animal paralysis, reduced the number of Q35-YFP aggregates and delayed polyQ-dependent acceleration of aging. Micromolar concentrations of NG-094 in animal tissues with only marginal effects on the nematode fitness sufficed to confer protection against polyQ proteotoxicity, even when the drug was administered after disease onset. NG-094 did not reduce insulin/insulin-like growth factor 1-like signaling, but conferred cytoprotection by a mechanism involving the heat-shock transcription factor HSF-1 that potentiated the expression of stress-inducible HSPs. NG-094 is thus a promising candidate for tests on mammalian models of polyQ and other protein conformational diseases.
Resumo:
To study the interaction of the TCR with its ligand, the complex of a MHC molecule and an antigenic peptide, we modified a TCR contact residue of a H-2Kd-restricted antigenic peptide with photoreactive 4-azidobenzoic acid. The photoreactive group was a critical component of the epitope recognized by CTL clones derived from mice immunized with such a peptide derivative. The majority of these clones expressed V beta 1-encoded beta chains that were paired with J alpha TA28-encoded alpha chains. For one of these TCR, the photoaffinity labeled sites were mapped on the alpha chain as a J alpha TA28-encoded tryptophan and on the beta chain as a residue of the C' strand of V beta 1. Molecular modeling of this TCR suggested the presence of a hydrophobic pocket that harbors this tryptophan as well as a tyrosine on the C' strand of V beta 1 between which the photoreactive side chain inserts. It is concluded that this avid binding principle may account for the preferential selection of V beta 1 and J alpha TA28-encoded TCR.
Resumo:
Using a direct binding assay based on photoaffinity labeling, we studied the interaction of T cell receptor (TCR) with a Kd-bound photoreactive peptide derivative on living cells. The Kd-restricted Plasmodium berghei circumsporozoite (PbCS) peptide 253-260 (YIPSAEKI) was reacted NH2-terminally with biotin and at the TCR contact residue Lys259 with photoreactive iodo, 4-azido salicylic acid (IASA) to make biotin-YIPSAEK(IASA)I. Cytotoxic T lymphocyte (CTL) clones derived from mice immunized with this derivative recognized this conjugate, but not a related one lacking the IASA group nor the parental PbCS peptide. The clones were Kd restricted. Recognition experiments with variant conjugates, lacking substituents from IASA, revealed a diverse fine specificity pattern and indicated that this group interacted directly with the TCR. The TCR of four clones could be photoaffinity labeled by biotin-YIPSAEK(125IASA)I. This labeling was dependent on the conjugates binding to the Kd molecule and was selective for the TCR alpha (2 clones) or beta chain (1 clone), or was common for both chains (1 clone). TCR sequence analysis showed a preferential usage of J alpha TA28 containing alpha chains that were paired with V beta 1 expressing beta chains. The TCR that were photoaffinity labeled at the alpha chain expressed these J alpha and V beta segments. The tryptophan encoded by the J alpha TA28 segment is rarely found in other J alpha segments. Moreover, we show that the IASA group interacts preferentially with tryptophan in aqueous solution. We thus propose that for these CTL clones, labeling of the alpha chain occurs via the J alpha-encoded tryptophan residue.
Resumo:
The synthesis of a photoreactive derivative of the human leukocyte antigen-A1 (HLA-A1)-restricted MAGE-1 peptide 161-169 (EADPTGHSY) is described. Using conventional automated solid-phase peptide synthesis, a photoreactive derivative of this peptide was synthesized by replacing histidine-167 with photo-reactive N-beta-4-azidosalicyloyl-L-2,3-diaminopropionic acid. The C-terminal tyrosine was incorporated as phosphotyrosine. This peptide derivative was radioiodinated in the presence of chloramine T. This iodination took place selectively at the photoreactive group, because the phosphate ester prevented tyrosine iodination. Following dephosphorylation with alkaline phosphatase and chromatographic purification, the radiolabeled peptide derivative was incubated with cells expressing HLA-A1 or other HLA molecules. Photoactivation resulted in efficient photoaffinity labeling of HLA-A1. Other HLA molecules or other cellular components were not detectably labeled. This labeling was inhibited by HLA-A1 but not by HLA-A2-binding peptides. This synthesis is generally applicable and can also be adapted to the synthesis of well-defined radiolabeled nonphotoreactive peptide derivatives.
Resumo:
Information on the effects of released wild-type or genetically engineered bacteria on resident bacterial communities is important to assess the potential risks associated with the introduction of these organisms into agroecosystems. The rifampicin-resistant biocontrol strain Pseudomonas fluorescens CHA0-Rif and its derivative CHA0-Rif/pME3424, which has improved biocontrol activity and enhanced production of the antibiotics 2,4-diacetylphloroglucinol (Phl) and pyoluteorin (Plt), were introduced into soil microcosms and the culturable bacterial community developing on cucumber roots was investigated 10 and 52 days later. The introduction of either of the two strains led to a transiently enhanced metabolic activity of the bacterial community on glucose dimers and polymers as measured with BIOLOG GN plates, but natural succession between the two sampling dates changed the metabolic activity of the bacterial community more than did the inoculants. The introduced strains did not significantly affect the abundance of dominant genotypic groups of culturable bacteria discriminated by restriction analysis of amplified 16S rDNA of 2500 individual isolates. About 30-50% of the resident bacteria were very sensitive to Phl and Plt, but neither the wild-type nor CHA0-Rif/pME3424 changed the proportion of sensitive and resistant bacteria in situ. In microcosms with a synthetic bacterial community, both biocontrol strains reduced the population of a strain of Pseudomonas but did not affect the abundance of four other bacterial strains including two highly antibiotic-sensitive isolates. We conclude that detectable perturbations in the metabolic activity of the resident bacterial community caused by the biocontrol strain CHA0-Rif are (i) transient, (ii) similar for the genetically improved derivative CHA0-Rif/pME3424 and (iii) less pronounced than changes in the community structure during plant growth.
Resumo:
We tested for antigen recognition and T cell receptor (TCR)-ligand binding 12 peptide derivative variants on seven H-2Kd-restricted cytotoxic T lymphocytes (CTL) clones specific for a bifunctional photoreactive derivative of the Plasmodium berghei circumsporozoite peptide 252-260 (SYIPSAEKI). The derivative contained iodo-4-azidosalicylic acid in place of PbCS S-252 and 4-azidobenzoic acid on PbCS K-259. Selective photoactivation of the N-terminal photoreactive group allowed crosslinking to Kd molecules and photoactivation of the orthogonal group to TCR. TCR photoaffinity labeling with covalent Kd-peptide derivative complexes allowed direct assessment of TCR-ligand binding on living CTL. In most cases (over 80%) cytotoxicity (chromium release) and TCR-ligand binding differed by less than fivefold. The exceptions included (a) partial TCR agonists (8 cases), for which antigen recognition was five-tenfold less efficient than TCR-ligand binding, (b) TCR antagonists (2 cases), which were not recognized and capable of inhibiting recognition of the wild-type conjugate, (c) heteroclitic agonists (2 cases), for which antigen recognition was more efficient than TCR-ligand binding, and (d) one partial TCR agonist, which activated only Fas (C1)95), but not perforin/granzyme-mediated cytotoxicity. There was no correlation between these divergences and the avidity of TCR-ligand binding, indicating that other factors than binding avidity determine the nature of the CTL response. An unexpected and novel finding was that CD8-dependent clones clearly incline more to TCR antagonism than CD8-independent ones. As there was no correlation between CD8 dependence and the avidity of TCR-ligand binding, the possibility is suggested that CD8 plays a critical role in aberrant CTL function.
Resumo:
Non-target effects of biocontrol strains of Pseudomonas on the population of resident pseudomonads should be assessed prior to their large scale application in the environment. The rifampicin resistant bacterium P. fluorescens CHA0-Rif and its antibiotic overproducing derivative CHA0-Rif/pME3424 were introduced into soil microcosms and the population of resident pseudomonads colonizing cucumber roots was investigated after 10 and 52 days. Both CHA0-Rif and CHA0-Rif/pME3424 displaced a part of the resident pseudomonad population after 10 days. To investigate the population structure, utilization of 10 carbon sources and production of two exoenzymes was assessed for 5600 individual pseudomonad isolates and 1700 isolates were subjected to amplified ribosomal DNA restriction analysis of the spacer region (spacer-ARDRA). After 10 days, only the proportion of pseudomonads able to degrade -tryptophan was reduced in treatments inoculated with either biocontrol strain. In parallel the phenotypic diversity was reduced. These effects were only observed 10 days after inoculation, and they were similar for inoculation with CHA0-Rif and CHA0-Rif/pME3424. Changes in the population structure of resident pseudomonads on cucumber roots during plant growth were more pronounced than changes due to the inoculants. The inoculants did not affect the genotypic diversity detected with spacer-ARDRA, but the genotypic fingerprints corresponded only partially to the phenotypic profiles. Overall CHA0-Rif had a small and transient impact on the population of resident pseudomonads and the effect was essentially the same for the genetically engineered derivative CHA0-
Resumo:
To elucidate the structural basis of T cell recognition of hapten-modified antigenic peptides, we studied the interaction of the T1 T cell antigen receptor (TCR) with its ligand, the H-2Kd-bound Plasmodium berghei circumsporozoite peptide 252-260 (SYIPSAEKI) containing photoreactive 4-azidobenzoic acid (ABA) on P. berghei circumsporozoite Lys259. The photoaffinity-labeled TCR residue(s) were mapped as Tyr48 and/or Tyr50 of complementary determining region 2beta (CDR2beta). Other TCR-ligand contacts were identified by mutational analysis. Molecular modeling, based on crystallographic coordinates of closely related TCR and major histocompatibility complex I molecules, indicated that ABA binds strongly and specifically in a cavity between CDR3alpha and CDR2beta. We conclude that TCR expressing selective Vbeta and CDR3alpha sequences form a binding domain between CDR3alpha and CDR2beta that can accommodate nonpeptidic moieties conjugated at the C-terminal portion of peptides binding to major histocompatibility complex (MHC) encoded proteins.