51 resultados para sensor LiDAR
em Université de Lausanne, Switzerland
Resumo:
For many drugs, finding the balance between efficacy and toxicity requires monitoring their concentrations in the patient's blood. Quantifying drug levels at the bedside or at home would have advantages in terms of therapeutic outcome and convenience, but current techniques require the setting of a diagnostic laboratory. We have developed semisynthetic bioluminescent sensors that permit precise measurements of drug concentrations in patient samples by spotting minimal volumes on paper and recording the signal using a simple point-and-shoot camera. Our sensors have a modular design consisting of a protein-based and a synthetic part and can be engineered to selectively recognize a wide range of drugs, including immunosuppressants, antiepileptics, anticancer agents and antiarrhythmics. This low-cost point-of-care method could make therapies safer, increase the convenience of doctors and patients and make therapeutic drug monitoring available in regions with poor infrastructure.
Resumo:
This paper presents a short history of the appraisal of laser scanner technologies in geosciences used for imaging relief by high-resolution digital elevation models (HRDEMs) or 3D models. A general overview of light detection and ranging (LIDAR) techniques applied to landslides is given, followed by a review of different applications of LIDAR for landslide, rockfall and debris-flow. These applications are classified as: (1) Detection and characterization of mass movements; (2) Hazard assessment and susceptibility mapping; (3) Modelling; (4) Monitoring. This review emphasizes how LIDARderived HRDEMs can be used to investigate any type of landslides. It is clear that such HRDEMs are not yet a common tool for landslides investigations, but this technique has opened new domains of applications that still have to be developed.
Resumo:
OBJECTIVE: To test the accuracy of a new pulse oximeter sensor based on transmittance and reflectance. This sensor makes transillumination of tissue unnecessary and allows measurements on the hand, forearm, foot, and lower limb. DESIGN: Prospective, open, nonrandomized criterion standard study. SETTING: Neonatal intensive care unit, tertiary care center. PATIENTS: Sequential sample of 54 critically ill neonates (gestational age 27 to 42 wks; postnatal age 1 to 28 days) with arterial catheters in place. MEASUREMENTS AND MAIN RESULTS: A total of 99 comparisons between pulse oximetry and arterial saturation were obtained. Comparison of femoral or umbilical arterial blood with transcutaneous measurements on the lower limb (n = 66) demonstrated an excellent correlation (r2 = .96). The mean difference was +1.44% +/- 3.51 (SD) % (range -11% to +8%). Comparison of the transcutaneous values with the radial artery saturation from the corresponding upper limb (n = 33) revealed a correlation coefficient of 0.94 with a mean error of +0.66% +/- 3.34% (range -6% to +7%). The mean difference between noninvasive and invasive measurements was least with the test sensor on the hand, intermediate on the calf and arm, and greatest on the foot. The mean error and its standard deviation were slightly larger for arterial saturation values < 90% than for values > or = 90%. CONCLUSION: Accurate pulse oximetry saturation can be acquired from the hand, forearm, foot, and calf of critically ill newborns using this new sensor.
Resumo:
Au cours des 240 dernières années, 53 mouvements de versant se sont produits le long du promontoire de Québec, causant la mort de 88 personnes principalement lors de chutes de blocs. En octobre 2004, un petit éboulement a atteint la route dans une zone proche de l'éboulement de 1889 qui a tué 35 personnes et blessé 30 autres. Une image 3D a été créée par l'utilisation d'un scanner Lidar terrestre (SLT). Les sept familles de joints identifiées sont en accord avec les mesures effectuées dans de précédentes études. L'imagerie SLT a aussi permit d'estimer les volumes des instabilités passées et d'en analyser le mécanisme : un glissement rocheux qui affecte des blocs débités en parallélépipèdes par d'autres familles de joints. De plus la zone étudiée montre qu'elle est favorable aux chutes de blocs.
Resumo:
On December 4th 2007, a 3-Mm3 landslide occurred along the northwestern shore of Chehalis Lake. The initiation zone is located at the intersection of the main valley slope and the northern sidewall of a prominent gully. The slope failure caused a displacement wave that ran up to 38 m on the opposite shore of the lake. The landslide is temporally associated with a rain-on-snow meteorological event which is thought to have triggered it. This paper describes the Chehalis Lake landslide and presents a comparison of discontinuity orientation datasets obtained using three techniques: field measurements, terrestrial photogrammetric 3D models and an airborne LiDAR digital elevation model to describe the orientation and characteristics of the five discontinuity sets present. The discontinuity orientation data are used to perform kinematic, surface wedge limit equilibrium and three-dimensional distinct element analyses. The kinematic and surface wedge analyses suggest that the location of the slope failure (intersection of the valley slope and a gully wall) has facilitated the development of the unstable rock mass which initiated as a planar sliding failure. Results from the three-dimensional distinct element analyses suggest that the presence, orientation and high persistence of a discontinuity set dipping obliquely to the slope were critical to the development of the landslide and led to a failure mechanism dominated by planar sliding. The three-dimensional distinct element modelling also suggests that the presence of a steeply dipping discontinuity set striking perpendicular to the slope and associated with a fault exerted a significant control on the volume and extent of the failed rock mass but not on the overall stability of the slope.
Resumo:
Activation of the hepatoportal glucose sensors by portal glucose infusion leads to increased glucose clearance and induction of hypoglycemia. Here, we investigated whether glucagon-like peptide-1 (GLP-1) could modulate the activity of these sensors. Mice were therefore infused with saline (S-mice) or glucose (P-mice) through the portal vein at a rate of 25 mg/kg. min. In P-mice, glucose clearance increased to 67.5 +/- 3.7 mg/kg. min as compared with 24.1 +/- 1.5 mg/kg. min in S-mice, and glycemia decreased from 5.0 +/- 0.1 to 3.3 +/- 0.1 mmol/l at the end of the 3-h infusion period. Coinfusion of GLP-1 with glucose into the portal vein at a rate of 5 pmol/kg. min (P-GLP-1 mice) did not increase the glucose clearance rate (57.4 +/- 5.0 ml/kg. min) and hypoglycemia (3.8 +/- 0.1 mmol/l) observed in P-mice. In contrast, coinfusion of glucose and the GLP-1 receptor antagonist exendin-(9-39) into the portal vein at a rate of 0.5 pmol/kg. min (P-Ex mice) reduced glucose clearance to 36.1 +/- 2.6 ml/kg. min and transiently increased glycemia to 9.2 +/- 0.3 mmol/l at 60 min of infusion before it returned to the fasting level (5.6 +/- 0.3 mmol/l) at 3 h. When glucose and exendin-(9-39) were infused through the portal and femoral veins, respectively, glucose clearance increased to 70.0 +/- 4.6 ml/kg. min and glycemia decreased to 3.1 +/- 0.1 mmol/l, indicating that exendin-(9-39) has an effect only when infused into the portal vein. Finally, portal vein infusion of glucose in GLP-1 receptor(-/-) mice failed to increase the glucose clearance rate (26.7 +/- 2.9 ml/kg. min). Glycemia increased to 8.5 +/- 0.5 mmol/l at 60 min and remained elevated until the end of the glucose infusion (8.2 +/- 0.4 mmol/l). Together, our data show that the GLP-1 receptor is part of the hepatoportal glucose sensor and that basal fasting levels of GLP-1 sufficiently activate the receptor to confer maximum glucose competence to the sensor. These data demonstrate an important extrapancreatic effect of GLP-1 in the control of glucose homeostasis.
Resumo:
A factor limiting preliminary rockfall hazard mapping at regional scale is often the lack of knowledge of potential source areas. Nowadays, high resolution topographic data (LiDAR) can account for realistic landscape details even at large scale. With such fine-scale morphological variability, quantitative geomorphometric analyses become a relevant approach for delineating potential rockfall instabilities. Using digital elevation model (DEM)-based ?slope families? concept over areas of similar lithology and cliffs and screes zones available from the 1:25,000 topographic map, a susceptibility rockfall hazard map was drawn up in the canton of Vaud, Switzerland, in order to provide a relevant hazard overview. Slope surfaces over morphometrically-defined thresholds angles were considered as rockfall source zones. 3D modelling (CONEFALL) was then applied on each of the estimated source zones in order to assess the maximum runout length. Comparison with known events and other rockfall hazard assessments are in good agreement, showing that it is possible to assess rockfall activities over large areas from DEM-based parameters and topographical elements.
Resumo:
Recent evidence suggests the existence of a hepatoportal vein glucose sensor, whose activation leads to enhanced glucose use in skeletal muscle, heart, and brown adipose tissue. The mechanism leading to this increase in whole body glucose clearance is not known, but previous data suggest that it is insulin independent. Here, we sought to further determine the portal sensor signaling pathway by selectively evaluating its dependence on muscle GLUT4, insulin receptor, and the evolutionarily conserved sensor of metabolic stress, AMP-activated protein kinase (AMPK). We demonstrate that the increase in muscle glucose use was suppressed in mice lacking the expression of GLUT4 in the organ muscle. In contrast, glucose use was stimulated normally in mice with muscle-specific inactivation of the insulin receptor gene, confirming independence from insulin-signaling pathways. Most importantly, the muscle glucose use in response to activation of the hepatoportal vein glucose sensor was completely dependent on the activity of AMPK, because enhanced hexose disposal was prevented by expression of a dominant negative AMPK in muscle. These data demonstrate that the portal sensor induces glucose use and development of hypoglycemia independently of insulin action, but by a mechanism that requires activation of the AMPK and the presence of GLUT4.
Resumo:
Introduction : Le monitoring de la tension artérielle à domicile est recommandé par plusieurs guidelines et a été montré être faisable chez la personne âgée. Les manomètres au poignet ont récemment été proposés pour la mesure de la tension artérielle à domicile, mais leur précision n'a pas été au préalable évaluée chez les patients âgés. Méthode : Quarante-huit participants (33 femmes et 15 hommes, moyenne d'âge 81.3±8.0 ans) ont leur tension artérielle mesurée avec un appareil au poignet avec capteur de position et un appareil au bras dans un ordre aléatoire et dans une position assise. Résultats : Les moyennes de mesures de tension artérielle étaient systématiquement plus basses avec l'appareil au poignet par rapport à celui du bras pour la pression systolique (120.1±2.2 vs. 130.5±2.2 mmHg, P < 0.001, moyenneidéviation standard) et pour la pression diastolique (66.011.3 vs. 69.7±1.3 mmHg, P < 0.001). De plus, une différence de lOmmHg ou plus grande entre l'appareil au bras et au poignet était observée dans 54.2 et 18,8% des mesures systoliques et diastoliques respectivement. Conclusion : Comparé à l'appareil au bras, l'appareil au poignet avec capteur de position sous-estimait systématiquement aussi bien la tension artérielle systolique que diastolique. L'ampleur de la différence est cliniquement significative et met en doute l'utilisation de l'appareil au poignet pour monitorer la tension artérielle chez la personne âgée. Cette étude indique le besoin de valider les appareils de mesures de la tension artérielle dans tous les groupes d'âge, y compris les personnes âgées.
Resumo:
OBJECTIVE: Home blood pressure (BP) monitoring is recommended by several clinical guidelines and has been shown to be feasible in elderly persons. Wrist manometers have recently been proposed for such home BP measurement, but their accuracy has not been previously assessed in elderly patients. METHODS: Forty-eight participants (33 women and 15 men, mean age 81.3±8.0 years) had their BP measured with a wrist device with position sensor and an arm device in random order in a sitting position. RESULTS: Average BP measurements were consistently lower with the wrist than arm device for systolic BP (120.1±2.2 vs. 130.5±2.2 mmHg, P<0.001, means±SD) and diastolic BP (66.0±1.3 vs. 69.7±1.3 mmHg, P<0.001). Moreover, a 10 mmHg or greater difference between the arm and wrist device was observed in 54.2 and 18.8% of systolic and diastolic measures, respectively. CONCLUSION: Compared with the arm device, the wrist device with position sensor systematically underestimated systolic as well as diastolic BP. The magnitude of the difference is clinically significant and questions the use of the wrist device to monitor BP in elderly persons. This study points to the need to validate BP measuring devices in all age groups, including in elderly persons.
Resumo:
Interleukin-1beta (IL-1beta), reactive oxygen species (ROS), and thioredoxin-interacting protein (TXNIP) are all implicated in the pathogenesis of type 2 diabetes mellitus (T2DM). Here we review mechanisms directing IL-1beta production and its pathogenic role in islet dysfunction during chronic hyperglycemia. In doing so, we integrate previously disparate disease-driving mechanisms for IL-1beta, ROS, and TXNIP in T2DM into one unifying model in which the NLRP3 inflammasome plays a central role. The NLRP3 inflammasome also drives IL-1beta maturation and secretion in another disease of metabolic dysregulation, gout. Thus, we propose that the NLRP3 inflammasome contributes to the pathogenesis of T2DM and gout by functioning as a sensor for metabolic stress.
Resumo:
The aim of this paper is to evaluate the risks associated with the use of fake fingerprints on a livescan supplied with a method of liveness detection. The method is based on optical properties of the skin. The sensor uses several polarizations and illuminations to capture the information of the different layers of the human skin. These experiments also allow for the determination under which conditions the system is deceived and if there is an influence respectively of the nature of the fake, the mould used for the production or the individuals involved in the attack. These experiments showed that current multispectral sensors can be deceived by the use of fake fingerprints created with or without the cooperation of the subject. Fakes created from direct casts perform better than those produced by fakes created from indirect casts. The results showed that the success of the attack is influenced by two main factors. The first is the quality of the fakes, and by extension the quality of the original fingerprint. The second is the combination of the general patterns involved in the attacks since an appropriate combination can strongly increase the rates of successful attacks.