5 resultados para sauts

em Université de Lausanne, Switzerland


Relevância:

10.00% 10.00%

Publicador:

Resumo:

During the past decades, anticancer immunotherapy has evolved from a promising therapeutic option to a robust clinical reality. Many immunotherapeutic regimens are now approved by the US Food and Drug Administration and the European Medicines Agency for use in cancer patients, and many others are being investigated as standalone therapeutic interventions or combined with conventional treatments in clinical studies. Immunotherapies may be subdivided into "passive" and "active" based on their ability to engage the host immune system against cancer. Since the anticancer activity of most passive immunotherapeutics (including tumor-targeting monoclonal antibodies) also relies on the host immune system, this classification does not properly reflect the complexity of the drug-host-tumor interaction. Alternatively, anticancer immunotherapeutics can be classified according to their antigen specificity. While some immunotherapies specifically target one (or a few) defined tumor-associated antigen(s), others operate in a relatively non-specific manner and boost natural or therapy-elicited anticancer immune responses of unknown and often broad specificity. Here, we propose a critical, integrated classification of anticancer immunotherapies and discuss the clinical relevance of these approaches.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Les problèmes d'écoulements multiphasiques en média poreux sont d'un grand intérêt pour de nombreuses applications scientifiques et techniques ; comme la séquestration de C02, l'extraction de pétrole et la dépollution des aquifères. La complexité intrinsèque des systèmes multiphasiques et l'hétérogénéité des formations géologiques sur des échelles multiples représentent un challenge majeur pour comprendre et modéliser les déplacements immiscibles dans les milieux poreux. Les descriptions à l'échelle supérieure basées sur la généralisation de l'équation de Darcy sont largement utilisées, mais ces méthodes sont sujettes à limitations pour les écoulements présentant de l'hystérèse. Les avancées récentes en terme de performances computationnelles et le développement de méthodes précises pour caractériser l'espace interstitiel ainsi que la distribution des phases ont favorisé l'utilisation de modèles qui permettent une résolution fine à l'échelle du pore. Ces modèles offrent un aperçu des caractéristiques de l'écoulement qui ne peuvent pas être facilement observées en laboratoire et peuvent être utilisé pour expliquer la différence entre les processus physiques et les modèles à l'échelle macroscopique existants. L'objet premier de la thèse se porte sur la simulation numérique directe : les équations de Navier-Stokes sont résolues dans l'espace interstitiel et la méthode du volume de fluide (VOF) est employée pour suivre l'évolution de l'interface. Dans VOF, la distribution des phases est décrite par une fonction fluide pour l'ensemble du domaine et des conditions aux bords particulières permettent la prise en compte des propriétés de mouillage du milieu poreux. Dans la première partie de la thèse, nous simulons le drainage dans une cellule Hele-Shaw 2D avec des obstacles cylindriques. Nous montrons que l'approche proposée est applicable même pour des ratios de densité et de viscosité très importants et permet de modéliser la transition entre déplacement stable et digitation visqueuse. Nous intéressons ensuite à l'interprétation de la pression capillaire à l'échelle macroscopique. Nous montrons que les techniques basées sur la moyenne spatiale de la pression présentent plusieurs limitations et sont imprécises en présence d'effets visqueux et de piégeage. Au contraire, une définition basée sur l'énergie permet de séparer les contributions capillaires des effets visqueux. La seconde partie de la thèse est consacrée à l'investigation des effets d'inertie associés aux reconfigurations irréversibles du ménisque causé par l'interface des instabilités. Comme prototype pour ces phénomènes, nous étudions d'abord la dynamique d'un ménisque dans un pore angulaire. Nous montrons que, dans un réseau de pores cubiques, les sauts et reconfigurations sont si fréquents que les effets d'inertie mènent à différentes configurations des fluides. A cause de la non-linéarité du problème, la distribution des fluides influence le travail des forces de pression, qui, à son tour, provoque une chute de pression dans la loi de Darcy. Cela suggère que ces phénomènes devraient être pris en compte lorsque que l'on décrit l'écoulement multiphasique en média poreux à l'échelle macroscopique. La dernière partie de la thèse s'attache à démontrer la validité de notre approche par une comparaison avec des expériences en laboratoire : un drainage instable dans un milieu poreux quasi 2D (une cellule Hele-Shaw avec des obstacles cylindriques). Plusieurs simulations sont tournées sous différentes conditions aux bords et en utilisant différents modèles (modèle intégré 2D et modèle 3D) afin de comparer certaines quantités macroscopiques avec les observations au laboratoire correspondantes. Malgré le challenge de modéliser des déplacements instables, où, par définition, de petites perturbations peuvent grandir sans fin, notre approche numérique apporte de résultats satisfaisants pour tous les cas étudiés. - Problems involving multiphase flow in porous media are of great interest in many scientific and engineering applications including Carbon Capture and Storage, oil recovery and groundwater remediation. The intrinsic complexity of multiphase systems and the multi scale heterogeneity of geological formations represent the major challenges to understand and model immiscible displacement in porous media. Upscaled descriptions based on generalization of Darcy's law are widely used, but they are subject to several limitations for flow that exhibit hysteric and history- dependent behaviors. Recent advances in high performance computing and the development of accurate methods to characterize pore space and phase distribution have fostered the use of models that allow sub-pore resolution. These models provide an insight on flow characteristics that cannot be easily achieved by laboratory experiments and can be used to explain the gap between physical processes and existing macro-scale models. We focus on direct numerical simulations: we solve the Navier-Stokes equations for mass and momentum conservation in the pore space and employ the Volume Of Fluid (VOF) method to track the evolution of the interface. In the VOF the distribution of the phases is described by a fluid function (whole-domain formulation) and special boundary conditions account for the wetting properties of the porous medium. In the first part of this thesis we simulate drainage in a 2-D Hele-Shaw cell filled with cylindrical obstacles. We show that the proposed approach can handle very large density and viscosity ratios and it is able to model the transition from stable displacement to viscous fingering. We then focus on the interpretation of the macroscopic capillary pressure showing that pressure average techniques are subject to several limitations and they are not accurate in presence of viscous effects and trapping. On the contrary an energy-based definition allows separating viscous and capillary contributions. In the second part of the thesis we investigate inertia effects associated with abrupt and irreversible reconfigurations of the menisci caused by interface instabilities. As a prototype of these phenomena we first consider the dynamics of a meniscus in an angular pore. We show that in a network of cubic pores, jumps and reconfigurations are so frequent that inertia effects lead to different fluid configurations. Due to the non-linearity of the problem, the distribution of the fluids influences the work done by pressure forces, which is in turn related to the pressure drop in Darcy's law. This suggests that these phenomena should be taken into account when upscaling multiphase flow in porous media. The last part of the thesis is devoted to proving the accuracy of the numerical approach by validation with experiments of unstable primary drainage in a quasi-2D porous medium (i.e., Hele-Shaw cell filled with cylindrical obstacles). We perform simulations under different boundary conditions and using different models (2-D integrated and full 3-D) and we compare several macroscopic quantities with the corresponding experiment. Despite the intrinsic challenges of modeling unstable displacement, where by definition small perturbations can grow without bounds, the numerical method gives satisfactory results for all the cases studied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rapport de synthèse Cette thèse consiste en trois essais sur les stratégies optimales de dividendes. Chaque essai correspond à un chapitre. Les deux premiers essais ont été écrits en collaboration avec les Professeurs Hans Ulrich Gerber et Elias S. W. Shiu et ils ont été publiés; voir Gerber et al. (2006b) ainsi que Gerber et al. (2008). Le troisième essai a été écrit en collaboration avec le Professeur Hans Ulrich Gerber. Le problème des stratégies optimales de dividendes remonte à de Finetti (1957). Il se pose comme suit: considérant le surplus d'une société, déterminer la stratégie optimale de distribution des dividendes. Le critère utilisé consiste à maximiser la somme des dividendes escomptés versés aux actionnaires jusqu'à la ruine2 de la société. Depuis de Finetti (1957), le problème a pris plusieurs formes et a été résolu pour différents modèles. Dans le modèle classique de théorie de la ruine, le problème a été résolu par Gerber (1969) et plus récemment, en utilisant une autre approche, par Azcue and Muler (2005) ou Schmidli (2008). Dans le modèle classique, il y a un flux continu et constant d'entrées d'argent. Quant aux sorties d'argent, elles sont aléatoires. Elles suivent un processus à sauts, à savoir un processus de Poisson composé. Un exemple qui correspond bien à un tel modèle est la valeur du surplus d'une compagnie d'assurance pour lequel les entrées et les sorties sont respectivement les primes et les sinistres. Le premier graphique de la Figure 1 en illustre un exemple. Dans cette thèse, seules les stratégies de barrière sont considérées, c'est-à-dire quand le surplus dépasse le niveau b de la barrière, l'excédent est distribué aux actionnaires comme dividendes. Le deuxième graphique de la Figure 1 montre le même exemple du surplus quand une barrière de niveau b est introduite, et le troisième graphique de cette figure montre, quand à lui, les dividendes cumulés. Chapitre l: "Maximizing dividends without bankruptcy" Dans ce premier essai, les barrières optimales sont calculées pour différentes distributions du montant des sinistres selon deux critères: I) La barrière optimale est calculée en utilisant le critère usuel qui consiste à maximiser l'espérance des dividendes escomptés jusqu'à la ruine. II) La barrière optimale est calculée en utilisant le second critère qui consiste, quant à lui, à maximiser l'espérance de la différence entre les dividendes escomptés jusqu'à la ruine et le déficit au moment de la ruine. Cet essai est inspiré par Dickson and Waters (2004), dont l'idée est de faire supporter aux actionnaires le déficit au moment de la ruine. Ceci est d'autant plus vrai dans le cas d'une compagnie d'assurance dont la ruine doit être évitée. Dans l'exemple de la Figure 1, le déficit au moment de la ruine est noté R. Des exemples numériques nous permettent de comparer le niveau des barrières optimales dans les situations I et II. Cette idée, d'ajouter une pénalité au moment de la ruine, a été généralisée dans Gerber et al. (2006a). Chapitre 2: "Methods for estimating the optimal dividend barrier and the probability of ruin" Dans ce second essai, du fait qu'en pratique on n'a jamais toute l'information nécessaire sur la distribution du montant des sinistres, on suppose que seuls les premiers moments de cette fonction sont connus. Cet essai développe et examine des méthodes qui permettent d'approximer, dans cette situation, le niveau de la barrière optimale, selon le critère usuel (cas I ci-dessus). Les approximations "de Vylder" et "diffusion" sont expliquées et examinées: Certaines de ces approximations utilisent deux, trois ou quatre des premiers moments. Des exemples numériques nous permettent de comparer les approximations du niveau de la barrière optimale, non seulement avec les valeurs exactes mais également entre elles. Chapitre 3: "Optimal dividends with incomplete information" Dans ce troisième et dernier essai, on s'intéresse à nouveau aux méthodes d'approximation du niveau de la barrière optimale quand seuls les premiers moments de la distribution du montant des sauts sont connus. Cette fois, on considère le modèle dual. Comme pour le modèle classique, dans un sens il y a un flux continu et dans l'autre un processus à sauts. A l'inverse du modèle classique, les gains suivent un processus de Poisson composé et les pertes sont constantes et continues; voir la Figure 2. Un tel modèle conviendrait pour une caisse de pension ou une société qui se spécialise dans les découvertes ou inventions. Ainsi, tant les approximations "de Vylder" et "diffusion" que les nouvelles approximations "gamma" et "gamma process" sont expliquées et analysées. Ces nouvelles approximations semblent donner de meilleurs résultats dans certains cas.