2 resultados para rumen microbial colonization

em Université de Lausanne, Switzerland


Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: Capsular fibrosis is a severe complication after breast implantation with an uncertain etiology. Microbial colonization of the prosthesis is hypothesized as a possible reason for the low-grade infection and subsequent capsular fibrosis. Current diagnostic tests consist of intraoperative swabs and tissue biopsies. Sonication of removed implants may improve the diagnosis of implant infection by detachment of biofilms from the implant surface. METHODS: Breast implants removed from patients with Baker grades 3 and 4 capsular contracture were analyzed by sonication, and the resulting sonication fluid was quantitatively cultured. RESULTS: This study investigated 22 breast implants (6 implants with Baker 3 and 16 implants with Baker 4 capsular fibrosis) from 13 patients. The mean age of the patients was 49 years (range, 31-76 years). The mean implant indwelling time was 10.4 years (range, 3 months to 30 years). Of the 22 implants, 12 were used for breast reconstruction and 10 for aesthetic procedures. The implants were located subglandularly (n = 12), submuscularly (n = 6), and subcutaneously (n = 4). Coagulase-negative staphylococci, Propionibacterium acnes, or both were detected in the sonication fluid cultures of nine implants (41%), eight of which grew significant numbers of microorganisms (>100 colonies/ml of sonication fluid). CONCLUSIONS: Sonication detected bacteria in 41% of removed breast implants. The identified bacteria belonged to normal skin flora. Further investigation is needed to determine any causal relation between biofilms and capsular fibrosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When a bloodstream infection (BSI) is suspected, most of the laboratory results-biochemical and haematologic-are available within the first hours after hospital admission of the patient. This is not the case for diagnostic microbiology, which generally takes a longer time because blood culture, which is to date the reference standard for the documentation of the BSI microbial agents, relies on bacterial or fungal growth. The microbial diagnosis of BSI directly from blood has been proposed to speed the determination of the etiological agent but was limited by the very low number of circulating microbes during these paucibacterial infections. Thanks to recent advances in molecular biology, including the improvement of nucleic acid extraction and amplification, several PCR-based methods for the diagnosis of BSI directly from whole blood have emerged. In the present review, we discuss the advantages and limitations of these new molecular approaches, which at best complement the culture-based diagnosis of BSI.