27 resultados para robotic welding

em Université de Lausanne, Switzerland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Robot surgery is a further step towards new potential developments in minimally invasive surgery. Surgeons must keep abreast of these new technologies and learn their limits and possibilities. Robot-assisted laparoscopic cholecystectomy has not yet been performed in our institution. The purpose of this report is to present the pathway of implementation of robotic laparoscopic cholecystectomy in a university hospital. METHODS: The Zeus(R) robot system was used. Experimental training was performed on animals. The results of our experimental training allowed us to perform our first two clinical cases. RESULTS: Robot arm set-up and trocar placement required 53 and 35 minutes. Operative time were 59 and 45 minutes respectively. The overall operative time was 112 and 80 minutes, respectively. There were no intraoperative complications. Patients were discharged from the hospital after an overnight stay. CONCLUSION: Robotic laparoscopic cholecystectomy is safe and patient recovery similar to those of standard laparoscopy. At present, there are no advantages of robotic over conventional surgery. Nevertheless, robots have the potential to revolutionise the way surgery is performed. Robot surgery is not reserved for a happy few. This technology deserves more attention because it has the potential to change the way surgery is performed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: In order to improve safety of pedicle screw placement several techniques have been developed. More recently robotically assisted pedicle insertion has been introduced aiming at increasing accuracy. The aim of this study was to compare this new technique with the two main pedicle insertion techniques in our unit namely fluoroscopically assisted vs EMG aided insertion. Material and methods: A total of 382 screws (78 thoracic,304 lumbar) were introduced in 64 patients (m/f = 1.37, equally distributed between insertion technique groups) by a single experienced spinal surgeon. From those, 64 (10 thoracic, 54 lumbar) were introduced in 11 patients using a miniature robotic device based on pre operative CT images under fluoroscopic control. 142 (4 thoracic, 138 lumbar) screws were introduced using lateral fluoroscopy in 27 patients while 176 (64 thoracic, 112 lumbar) screws in 26 patients were inserted using both fluoroscopy and EMG monitoring. There was no difference in the distribution of scoliotic spines between the 3 groups (n = 13). Screw position was assessed by an independent observer on CTs in axial, sagittal and coronal planes using the Rampersaud A to D classification. Data of lumbar and thoracic screws were processed separately as well as data obtained from axial, sagittal and coronal CT planes. Results: Intra- and interobserver reliability of the Rampersaud classification was moderate, (0.35 and 0.45 respectively) being the least good on axial plane. The total number of misplaced screws (C&D grades) was generally low (12 thoracic and 12 lumbar screws). Misplacement rates were same in straight and scoliotic spines. The only difference in misplacement rates was observed on axial and coronal images in the EMG assisted thoracic screw group with a higher proportion of C or D grades (p <0.05) in that group. Recorded compound muscle action potentials (CMAP) values of the inserted screws were 30.4 mA for the robot and 24.9mA for the freehand technique with a CI of 3.8 of the mean difference of 5.5 mA. Discussion: Robotic placement did improve the placement of thoracic screws but not that of lumbar screws possibly because our misplacement rates in general near that of published navigation series. Robotically assisted spine surgery might therefore enhance the safety of screw placement in particular in training settings were different users at various stages of their learning curve are involved in pedicle instrumentation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bone-mounted robotic guidance for pedicle screw placement has been recently introduced, aiming at increasing accuracy. The aim of this prospective study was to compare this novel approach with the conventional fluoroscopy assisted freehand technique (not the two- or three-dimensional fluoroscopy-based navigation). Two groups were compared: 11 patients, constituting the robotical group, were instrumented with 64 pedicle screws; 23 other patients, constituting the fluoroscopic group, were also instrumented with 64 pedicle screws. Screw position was assessed by two independent observers on postoperative CT-scans using the Rampersaud A to D classification. No neurological complications were noted. Grade A (totally within pedicle margins) accounted for 79% of the screws in the robotically assisted and for 83% of the screws in the fluoroscopic group respectively (p = 0.8). Grade C and D screws, considered as misplacements, accounted for 4.7% of all robotically inserted screws and 7.8% of the fluoroscopically inserted screws (p = 0.71). The current study did not allow to state that robotically assisted screw placement supersedes the conventional fluoroscopy assisted technique, although the literature is more optimistic about the former.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A significant postoperative problem in patients undergoing excision of intramedullary tumors is painful dysesthesiae, attributed to various causes, including edema, arachnoid scarring and cord tethering. The authors describe a technique of welding the pia and arachnoid after the excision of intramedullary spinal cord tumors used in seven cases. Using a fine bipolar forcep and a low current, the pial edges of the myelotomy were brought together and welded under saline irrigation. A similar method was used for closing the arachnoid while the dura was closed with a running 5-0 vicryl suture. Closing the pia and arachnoid restores normal cord anatomy after tumor excision and may reduce the incidence of postoperative painful dysesthesiae.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The use of robots for gait training in Parkinson disease (PD) is growing, but no evidence points to an advantage over the standard treadmill. METHODS: In this randomized, single-blind controlled trial, participants aged <75 years with early-stage PD (Hoehn-Yahr <3) were randomly allocated to 2 groups: either 30 minutes of gait training on a treadmill or in the Lokomat for 3 d/wk for 4 weeks. Patients were evaluated by a physical therapist blinded to allocation before and at the end of treatment and then at the 3- and 6-month follow-up. The primary outcome measure was the 6-minute walk test. RESULTS: Of 334 screened patients, the authors randomly allocated 30 to receive gait training with treadmill or the Lokomat. At baseline, the 2 groups did not differ. At the 6-month follow-up, both groups had improved significantly in the primary outcome measure (treadmill: mean = 490.95 m, 95% confidence interval [CI] = 448.56-533.34, P = .0006; Lokomat: 458.6 m, 95% CI = 417.23-499.96, P = .01), but no significant differences were found between the 2 groups (P = .53). DISCUSSION: Robotic gait training with the Lokomat is not superior to treadmill training in improving gait performance in patients with PD. Both approaches are safe, with results maintained for up to 6 months.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since 2000 and the commercialisation of the Da Vinci robotic system, indications for robotic surgery are rapidly increasing. Recent publications proved superior functional outcomes with equal oncologic safety in comparison to conventional open surgery. Its field of application may extend to the nasopharynx and skull base surgery. The preliminary results are encouraging. This article reviews the current literature on the role of transoral robotic surgery in head and neck cancer.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The use of a robotic surgical system is claimed to allow precise traction and counter-traction, especially in a narrow pelvis. Whether this translates to improvement of the quality of the resected specimen is not yet clear. The aim of the study was to compare the quality of the TME and the short-term oncological outcome between robotic and laparoscopic rectal cancer resections. METHODS: 20 consecutive robotic TME performed in a single institution for rectal cancer (Rob group) were matched 1:2 to 40 laparoscopic resections (Lap group) for gender, body mass index (BMI), and distance from anal verge on rigid proctoscopy. The quality of TME was assessed by 2 blinded and independent pathologists and reported according to international standardized guidelines. RESULTS: Both samples were well matched for gender, BMI (median 25.9 vs. 24.2 kg/m(2), p = 0.24), and level of the tumor (4.1 vs. 4.8 cm, p = 0.20). The quality of the TME was better in the Robotic group (complete TME: 95 vs. 55 %; p = 0.0003, nearly complete TME 5 vs. 37 %; p = 0.04, incomplete TME 0 vs. 8 %, p = 0.09). A trend for lower positive circumferential margin was observed in the Robotic group (10 vs. 25 %, p = 0.1). CONCLUSIONS: These results suggest that robotic-assisted surgery improves the quality of TME for rectal cancer. Whether this translates to better oncological outcome needs to be further investigated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Self-consciousness has mostly been approached by philosophical enquiry and not by empirical neuroscientific study, leading to an overabundance of diverging theories and an absence of data-driven theories. Using robotic technology, we achieved specific bodily conflicts and induced predictable changes in a fundamental aspect of self-consciousness by altering where healthy subjects experienced themselves to be (self-location). Functional magnetic resonance imaging revealed that temporo-parietal junction (TPJ) activity reflected experimental changes in self-location that also depended on the first-person perspective due to visuo-tactile and visuo-vestibular conflicts. Moreover, in a large lesion analysis study of neurological patients with a well-defined state of abnormal self-location, brain damage was also localized at TPJ, providing causal evidence that TPJ encodes self-location. Our findings reveal that multisensory integration at the TPJ reflects one of the most fundamental subjective feelings of humans: the feeling of being an entity localized at a position in space and perceiving the world from this position and perspective.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose of reviewThis review provides information and an update on stereotactic radiosurgery (SRS) equipment, with a focus on intracranial lesions and brain neoplasms.Recent findingsGamma Knife radiosurgery represents the gold standard for intracranial radiosurgery, using a dedicated equipment, and has recently evolved with a newly designed technology, Leksell Gamma Knife Perfexion. Linear accelerator-based radiosurgery is more recent, and originally based on existing systems, either adapted or dedicated to radiosurgery. Equipment incorporating specific technologies, such as the robotic CyberKnife system, has been developed. Novel concepts in radiation therapy delivery techniques, such as intensity-modulated radiotherapy, were also developed; their integration with computed tomography imaging and helical delivery has led to the TomoTherapy system. Recent data on the management of intracranial tumors with radiosurgery illustrate the trend toward a larger use and acceptance of this therapeutic modality.SummarySRS has become an important alternative treatment for a variety of lesions. Each radiosurgery system has its advantages and limitations. The 'perfect' and ubiquitous system does not exist. The choice of a radiosurgery system may vary with the strategy and needs of specific radiosurgery programs. No center can afford to acquire every technology, and strategic choices have to be made. Institutions with large neurosurgery and radiation oncology programs usually have more than one system, allowing optimization of the management of patients with a choice of open neurosurgery, radiosurgery, and radiotherapy. Given its minimally invasive nature and increasing clinical acceptance, SRS will continue to progress and offer new advances as a therapeutic tool in neurosurgery and radiotherapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose. This study was conducted to determine whether newer infrared or laser welding technologies created joints superior to traditional furnace or torch soldering methods of joining metals. It was designed to assess the mechanical resistance, the characteristics of the fractured surfaces, and the elemental diffusion of joints obtained by four different techniques: (1) preceramic soldering with a propane-oxygen torch, (2) postceramic soldering with a porcelain furnace, (3) preceramic and (4) postceramic soldering with an infrared heat source, and (5) laser welding. Material and methods. Mechanical resistance was determined by measuring the ultimate tensile strength of the joint and by determining their resistance to fatigue loading. Elemental diffusion to and from the joint was assessed with microprobe tracings. Scanning electron microscopy micrographs of the fractured surface were also obtained and evaluated. Results. Under monotonic tensile stress, three groups emerged: The laser welds were the strongest, the preceramic joints ranged second, and the postceramic joints were the weakest. Under fatigue stress, the order was as follows: first, the preceramic joints, and second, a group that comprised both postceramic joints and the laser welds. Inspection of the fractographs revealed several fracture modes but no consistent pattern emerged. Microprobe analyses demonstrated minor diffusion processes in the preceramic joints, whereas significant diffusion was observed in the postceramic joints. Clinical Implications. The mechanical resistance data conflicted as to the strength that could be expected of laser welded joints. On the basis of fatigue resistance of the joints, neither infrared solder joints nor laser welds were stronger than torch or furnace soldered joints.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: Neuroimaging of the self focused on high-level mechanisms such as language, memory or imagery of the self. Recent evidence suggests that low-level mechanisms of multisensory and sensorimotor integration may play a fundamental role in encoding self-location and the first-person perspective (Blanke and Metzinger, 2009). Neurological patients with out-of body experiences (OBE) suffer from abnormal self-location and the first-person perspective due to a damage in the temporo-parietal junction (Blanke et al., 2004). Although self-location and the first-person perspective can be studied experimentally (Lenggenhager et al., 2009), the neural underpinnings of self-location have yet to be investigated. To investigate the brain network involved in self-location and first-person perspective we used visuo-tactile multisensory conflict, magnetic resonance (MR)-compatible robotics, and fMRI in study 1, and lesion analysis in a sample of 9 patients with OBE due to focal brain damage in study 2. Methods: Twenty-two participants saw a video showing either a person's back or an empty room being stroked (visual stimuli) while the MR-compatible robotic device stroked their back (tactile stimulation). Direction and speed of the seen stroking could either correspond (synchronous) or not (asynchronous) to those of the seen stroking. Each run comprised the four conditions according to a 2x2 factorial design with Object (Body, No-Body) and Synchrony (Synchronous, Asynchronous) as main factors. Self-location was estimated using the mental ball dropping (MBD; Lenggenhager et al., 2009). After the fMRI session participants completed a 6-item adapted from the original questionnaire created by Botvinick and Cohen (1998) and based on questions and data obtained by Lenggenhager et al. (2007, 2009). They were also asked to complete a questionnaire to disclose the perspective they adopted during the illusion. Response times (RTs) for the MBD and fMRI data were analyzed with a 3-way mixed model ANOVA with the in-between factor Perspective (up, down) and the two with-in factors Object (body, no-body) and Stroking (synchronous, asynchronous). Quantitative lesion analysis was performed using MRIcron (Rorden et al., 2007). We compared the distributions of brain lesions confirmed by multimodality imaging (Knowlton, 2004) in patients with OBE with those showing complex visual hallucinations involving people or faces, but without any disturbance of self-location and first person perspective. Nine patients with OBE were investigated. The control group comprised 8 patients. Structural imaging data were available for normalization and co-registration in all the patients. Normalization of each patient's lesion into the common MNI (Montreal Neurological Institute) reference space permitted simple, voxel-wise, algebraic comparisons to be made. Results: Even if in the scanner all participants were lying on their back and were facing upwards, analysis of perspective showed that half of the participants had the impression to be looking down at the virtual human body below them, despite any cues about their body position (Down-group). The other participants had the impression to be looking up at the virtual body above them (Up-group). Analysis of Q3 ("How strong was the feeling that the body you saw was you?") indicated stronger self-identification with the virtual body during the synchronous stroking. RTs in the MBD task confirmed these subjective data (significant 3-way interaction between perspective, object and stroking). fMRI results showed eight cortical regions where the BOLD signal was significantly different during at least one of the conditions resulting from the combination of Object and Stroking, relative to baseline: right and left temporo-parietal junction, right EBA, left middle occipito-temporal gyrus, left postcentral gyrus, right medial parietal lobe, bilateral medial occipital lobe (Fig 1). The activation patterns in right and left temporo-parietal junction and right EBA reflected changes in self-location and perspective as revealed by statistical analysis that was performed on the percentage of BOLD change with respect to the baseline. Statistical lesion overlap comparison (using nonparametric voxel based lesion symptom mapping) with respect to the control group revealed the right temporo-parietal junction, centered at the angular gyrus (Talairach coordinates x = 54, y =-52, z = 26; p>0.05, FDR corrected). Conclusions: The present questionnaire and behavioural results show that - despite the noisy and constraining MR environment) our participants had predictable changes in self-location, self-identification, and first-person perspective when robotic tactile stroking was applied synchronously with the robotic visual stroking. fMRI data in healthy participants and lesion data in patients with abnormal self-location and first-person perspective jointly revealed that the temporo-parietal cortex especially in the right hemisphere encodes these conscious experiences. We argue that temporo-parietal activity reflects the experience of the conscious "I" as embodied and localized within bodily space.