3 resultados para rietveld refinement
em Université de Lausanne, Switzerland
Resumo:
Abiotic factors are considered strong drivers of species distribution and assemblages. Yet these spatial patterns are also influenced by biotic interactions. Accounting for competitors or facilitators may improve both the fit and the predictive power of species distribution models (SDMs). We investigated the influence of a dominant species, Empetrum nigrum ssp. hermaphroditum, on the distribution of 34 subordinate species in the tundra of northern Norway. We related SDM parameters of those subordinate species to their functional traits and their co-occurrence patterns with E. hermaphroditum across three spatial scales. By combining both approaches, we sought to understand whether these species may be limited by competitive interactions and/or benefit from habitat conditions created by the dominant species. The model fit and predictive power increased for most species when the frequency of occurrence of E. hermaphroditum was included in the SDMs as a predictor. The largest increase was found for species that 1) co-occur most of the time with E. hermaphroditum, both at large (i.e. 750 m) and small spatial scale (i.e. 2 m) or co-occur with E. hermaphroditum at large scale but not at small scale and 2) have particularly low or high leaf dry matter content (LDMC). Species that do not co-occur with E. hermaphroditum at the smallest scale are generally palatable herbaceous species with low LDMC, thus showing a weak ability to tolerate resource depletion that is directly or indirectly induced by E. hermaphroditum. Species with high LDMC, showing a better aptitude to face resource depletion and grazing, are often found in the proximity of E. hermaphroditum. Our results are consistent with previous findings that both competition and facilitation structure plant distribution and assemblages in the Arctic tundra. The functional and co-occurrence approaches used were complementary and provided a deeper understanding of the observed patterns by refinement of the pool of potential direct and indirect ecological effects of E. hermaphroditum on the distribution of subordinate species. Our correlative study would benefit being complemented by experimental approaches.
Resumo:
Abstract : Auditory spatial functions are of crucial importance in everyday life. Determining the origin of sound sources in space plays a key role in a variety of tasks including orientation of attention, disentangling of complex acoustic patterns reaching our ears in noisy environments. Following brain damage, auditory spatial processing can be disrupted, resulting in severe handicaps. Complaints of patients with sound localization deficits include the inability to locate their crying child or being over-loaded by sounds in crowded public places. Yet, the brain bears a large capacity for reorganization following damage and/or learning. This phenomenon is referred as plasticity and is believed to underlie post-lesional functional recovery as well as learning-induced improvement. The aim of this thesis was to investigate the organization and plasticity of different aspects of auditory spatial functions. Overall, we report the outcomes of three studies: In the study entitled "Learning-induced plasticity in auditory spatial representations" (Spierer et al., 2007b), we focused on the neurophysiological and behavioral changes induced by auditory spatial training in healthy subjects. We found that relatively brief auditory spatial discrimination training improves performance and modifies the cortical representation of the trained sound locations, suggesting that cortical auditory representations of space are dynamic and subject to rapid reorganization. In the same study, we tested the generalization and persistence of training effects over time, as these are two determining factors in the development of neurorehabilitative intervention. In "The path to success in auditory spatial discrimination" (Spierer et al., 2007c), we investigated the neurophysiological correlates of successful spatial discrimination and contribute to the modeling of the anatomo-functional organization of auditory spatial processing in healthy subjects. We showed that discrimination accuracy depends on superior temporal plane (STP) activity in response to the first sound of a pair of stimuli. Our data support a model wherein refinement of spatial representations occurs within the STP and that interactions with parietal structures allow for transformations into coordinate frames that are required for higher-order computations including absolute localization of sound sources. In "Extinction of auditory stimuli in hemineglect: space versus ear" (Spierer et al., 2007a), we investigated auditory attentional deficits in brain-damaged patients. This work provides insight into the auditory neglect syndrome and its relation with neglect symptoms within the visual modality. Apart from contributing to a basic understanding of the cortical mechanisms underlying auditory spatial functions, the outcomes of the studies also contribute to develop neurorehabilitation strategies, which are currently being tested in clinical populations.
Resumo:
Pizgrischite, (Cu,Fe)Cu14PbBi17S35, is a new mineral species named after the type locality, Piz Grisch Mountain, Val Ferrera, Graubunden, Switzerland. This sulfosalt occurs as thin, striated, metallic lead-grey blades measuring up to I cm in length, embedded in quartz and associated with tetrahedrite, chalcopyrite, pyrite, sphalerite, emplectite and derivatives of the aikinite-bismuthinite series. In plane-polarized light, the new species is brownish grey with no perceptible pleochroism; under crossed nicols in oil immersion, it presents a weak anisotropy with dark brown tints. Minimum and maximum reflectance values (in %) in air are: 40.7-42.15 (470 nm), 41.2-43.1 (546 nm), 41.2-43.35 (589 nm) and 40.7-43.3 (650 nm). Cleavage is perfect along 001 I and well developed on {010}. Abundant polysynthetic twinning is observed on (010). The mean micro-indentation hardness is 190 kg/mm(2) (Mohs hardness 3.3), and the calculated density is 6.58 g/cm(3). Electron-microprobe analyses yield (wt%; mean result of seven analyses): Cu 16.48, Pb 2.10, Fe 0.77, Bi 60.70, Sb 0.35, S 19.16, Se 0.04, total 99.60. The resulting empirical chemical formula is (Cu15.24Fe0.80Pb0.60)(Sigma 16.64)(Bi17.07Sb0.17)(Sigma 17.24)(S35.09Se0.03)(Sigma 35.12), in accordance with the formula derived from the single-crystal refinement of the structure, (Cu,Fe)Cu14PbBi17S35. Pizgrischite is monoclinic, space group C2/m, with the following unit-cell parameters: a 35.054(2), b3.91123(I), c43.192(2) angstrom, beta 96.713(4)degrees, V5881.24 angstrom(3), Z=4. The strongest seven X-ray powder-diffraction lines [d in angstrom (I)(hkl)] are: 5.364(40)((6) over bar 04), 4.080(50)((8) over bar 05), 3.120(40)(118), 3.104(68)((3) over bar 18), 2.759(53) ((9) over bar 11),2.752(44)(910) and 1.956(100)(020). The crystal structure is an expanded monoclinic derivative of kupcikite. Pizgrischite belongs to the cuprobismutite series of bismuth sulfosalts but, sensu stricto, it is not a homologue of cuprobismutite. At the type locality. pizarischite is the result of the Alpine metamorphism under greenschist-facies conditions of pre-Tertiary hydrothermal Cu-Bi mineralization.