42 resultados para rhesus macaques (Macaca mulatta)
em Université de Lausanne, Switzerland
Resumo:
Rhesus macaques (Macaca mulatta) have played a valuable role in the development of human immunodeficiency virus (HIV) vaccine candidates prior to human clinical trials. However, changes and/or improvements in immunogen quality in the good manufacturing practice (GMP) process or changes in adjuvants, schedule, route, dose, or readouts have compromised the direct comparison of T-cell responses between species. Here we report a comparative study in which T-cell responses from humans and macaques to HIV type 1 antigens (Gag, Pol, Nef, and Env) were induced by the same vaccine batches prepared under GMP and administered according to the same schedules in the absence and presence of priming. Priming with DNA (humans and macaques) or alphavirus (macaques) and boosting with NYVAC induced robust and broad antigen-specific responses, with highly similar Env-specific gamma interferon (IFN-gamma) enzyme-linked immunospot assay responses in rhesus monkeys and human volunteers. Persistent cytokine responses of antigen-specific CD4(+) and CD8(+) T cells of the central memory as well as the effector memory phenotype, capable of simultaneously eliciting multiple cytokines (IFN-gamma, interleukin 2, and tumor necrosis factor alpha), were induced. Responses were highly similar in humans and primates, confirming earlier data indicating that priming is essential for inducing robust NYVAC-boosted IFN-gamma T-cell responses. While significant similarities were observed in Env-specific responses in both species, differences were also observed with respect to responses to other HIV antigens. Future studies with other vaccines using identical lots, immunization schedules, and readouts will establish a broader data set of species similarities and differences with which increased confidence in predicting human responses may be achieved.
Resumo:
The Thai trial (RV144) indicates that a prime-boost vaccine combination that induces both T-cell and antibody responses may be desirable for an effective HIV vaccine. We have previously shown that immunization with synthetic long peptides (SLP), covering the conserved parts of SIV, induced strong CD4 T-cell and antibody responses, but only modest CD8 T-cell responses. To generate a more balanced CD4/CD8 T-cell and antibody response, this study evaluated a pox-vector prime/SLP boost strategy in rhesus macaques. Priming with a replication-competent NYVAC, encoding HIV-1 clade C gag, pol and nef, induced modest IFNγ T-cell immune responses, predominantly directed against HIV-1 Gag. Booster immunization with SLP, covering the conserved parts of HIV-1 Gag, Pol and Env, resulted in a more than 10-fold increase in IFNγ ELISpot responses in four of six animals, which were predominantly HIV-1 Pol-specific. The animals showed a balanced polyfunctional CD4 and CD8 T-cell response and high Ab titres.
Resumo:
An effective human immunodeficiency virus type 1 (HIV-1) vaccine must induce protective antibody responses, as well as CD4(+) and CD8(+) T cell responses, that can be effective despite extraordinary diversity of HIV-1. The consensus and mosaic immunogens are complete but artificial proteins, computationally designed to elicit immune responses with improved cross-reactive breadth, to attempt to overcome the challenge of global HIV diversity. In this study, we have compared the immunogenicity of a transmitted-founder (T/F) B clade Env (B.1059), a global group M consensus Env (Con-S), and a global trivalent mosaic Env protein in rhesus macaques. These antigens were delivered using a DNA prime-recombinant NYVAC (rNYVAC) vector and Env protein boost vaccination strategy. While Con-S Env was a single sequence, mosaic immunogens were a set of three Envs optimized to include the most common forms of potential T cell epitopes. Both Con-S and mosaic sequences retained common amino acids encompassed by both antibody and T cell epitopes and were central to globally circulating strains. Mosaics and Con-S Envs expressed as full-length proteins bound well to a number of neutralizing antibodies with discontinuous epitopes. Also, both consensus and mosaic immunogens induced significantly higher gamma interferon (IFN-γ) enzyme-linked immunosorbent spot assay (ELISpot) responses than B.1059 immunogen. Immunization with these proteins, particularly Con-S, also induced significantly higher neutralizing antibodies to viruses than B.1059 Env, primarily to tier 1 viruses. Both Con-S and mosaics stimulated more potent CD8-T cell responses against heterologous Envs than did B.1059. Both antibody and cellular data from this study strengthen the concept of using in silico-designed centralized immunogens for global HIV-1 vaccine development strategies. IMPORTANCE: There is an increasing appreciation for the importance of vaccine-induced anti-Env antibody responses for preventing HIV-1 acquisition. This nonhuman primate study demonstrates that in silico-designed global HIV-1 immunogens, designed for a human clinical trial, are capable of eliciting not only T lymphocyte responses but also potent anti-Env antibody responses.
Resumo:
Administration of ghrelin, a key peptide in the regulation of energy homeostasis, has been shown to decrease LH pulse frequency while concomitantly elevating cortisol levels. Because increased endogenous CRH release in stress is associated with an inhibition of reproductive function, we have tested here whether the pulsatile LH decrease after ghrelin may reflect an activated hypothalamic-pituitary-adrenal axis and be prevented by a CRH antagonist. After a 3-h baseline LH pulse frequency monitoring, five adult ovariectomized rhesus monkeys received a 5-h saline (protocol 1) or ghrelin (100-microg bolus followed by 100 microg/h, protocol 2) infusion. In protocols 3 and 4, animals were given astressin B, a nonspecific CRH receptor antagonist (0.45 mg/kg im) 90 min before ghrelin or saline infusion. Blood samples were taken every 15 min for LH measurements, whereas cortisol and GH were measured every 45 min. Mean LH pulse frequency during the 5-h ghrelin infusion was significantly lower than in all other treatments (P < 0.05) and when compared with the baseline period (P < 0.05). Pretreatment with astressin B prevented the decrease. Ghrelin stimulated cortisol and GH secretion, whereas astressin B pretreatment prevented the cortisol, but not the GH, release. Our data indicate that CRH release mediates the inhibitory effect of ghrelin on LH pulse frequency and suggest that the inhibitory impact of an insufficient energy balance on reproductive function may in part be mediated by the hypothalamic-pituitary-adrenal axis.
Resumo:
Lentiviral vectors infect quiescent cells and allow for the delivery of genes to discrete brain regions. The present study assessed whether stable lentiviral gene transduction can be achieved in the monkey nigrostriatal system. Three young adult Rhesus monkeys received injections of a lentiviral vector encoding for the marker gene beta galatosidase (beta Gal). On one side of the brain, each monkey received multiple lentivirus injections into the caudate and putamen. On the opposite side, each animal received a single injection aimed at the substantia nigra. The first two monkeys were sacrificed 1 month postinjection, while the third monkey was sacrificed 3 months postinjection. Robust incorporation of the beta Gal gene was seen in the striatum of all three monkeys. Stereological counts revealed that 930,218; 1,192,359; and 1,501,217 cells in the striatum were beta Gal positive in monkeys 1 (n = 2) and 3 (n = 1) months later, respectively. Only the third monkey had an injection placed directly into the substantia nigra and 187,308 beta Gal-positive cells were identified in this animal. The injections induced only minor perivascular cuffing and there was no apparent inflammatory response resulting from the lentivirus injections. Double label experiments revealed that between 80 and 87% of the beta Gal-positive cells were neurons. These data indicate that robust transduction of striatal and nigral cells can occur in the nonhuman primate brain for up to 3 months. Studies are now ongoing testing the ability of lentivirus encoding for dopaminergic trophic factors to augment the nigrostriatal system in nonhuman primate models of Parkinson's disease.
Resumo:
The dentate gyrus is one of only two regions of the mammalian brain where substantial neurogenesis occurs postnatally. However, detailed quantitative information about the postnatal structural maturation of the primate dentate gyrus is meager. We performed design-based, stereological studies of neuron number and size, and volume of the dentate gyrus layers in rhesus macaque monkeys (Macaca mulatta) of different postnatal ages. We found that about 40% of the total number of granule cells observed in mature 5-10-year-old macaque monkeys are added to the granule cell layer postnatally; 25% of these neurons are added within the first three postnatal months. Accordingly, cell proliferation and neurogenesis within the dentate gyrus peak within the first 3 months after birth and remain at an intermediate level between 3 months and at least 1 year of age. Although granule cell bodies undergo their largest increase in size during the first year of life, cell size and the volume of the three layers of the dentate gyrus (i.e. the molecular, granule cell and polymorphic layers) continue to increase beyond 1 year of age. Moreover, the different layers of the dentate gyrus exhibit distinct volumetric changes during postnatal development. Finally, we observe significant levels of cell proliferation, neurogenesis and cell death in the context of an overall stable number of granule cells in mature 5-10-year-old monkeys. These data identify an extended developmental period during which neurogenesis might be modulated to significantly impact the structure and function of the dentate gyrus in adulthood.
Resumo:
High levels of HIV-1 replication during the chronic phase of infection usually correlate with rapid progression to severe immunodeficiency. However, a minority of highly viremic individuals remains asymptomatic and maintains high CD4+ T cell counts. This tolerant profile is poorly understood and reminiscent of the widely studied nonprogressive disease model of SIV infection in natural hosts. Here, we identify transcriptome differences between rapid progressors (RPs) and viremic nonprogressors (VNPs) and highlight several genes relevant for the understanding of HIV-1-induced immunosuppression. RPs were characterized by a specific transcriptome profile of CD4+ and CD8+ T cells similar to that observed in pathogenic SIV-infected rhesus macaques. In contrast, VNPs exhibited lower expression of interferon-stimulated genes and shared a common gene regulation profile with nonpathogenic SIV-infected sooty mangabeys. A short list of genes associated with VNP, including CASP1, CD38, LAG3, TNFSF13B, SOCS1, and EEF1D, showed significant correlation with time to disease progression when evaluated in an independent set of CD4+ T cell expression data. This work characterizes 2 minimally studied clinical patterns of progression to AIDS, whose analysis may inform our understanding of HIV pathogenesis.
Resumo:
Background: In order to improve the immunogenicity of currently available non-replicating pox virus HIV vaccine vectors, NYVAC was genetically modified through re-insertion of two host range genes (K1L and C7L), resulting in restored replicative capacity in human cells. Methods: In the present study these vectors, expressing either a combination of the HIV-1 clade C antigens Env, Gag, Pol, Nef, or a combination of Gal, Pol, Nef were evaluated for safety and immunogenicity in rhesus macaques, which were immunized at weeks 0, 4 and 12 either by scarification (conventional poxvirus route of immunization), intradermal or by intramuscular injection (route used in previous vaccine studies). Results: Replication competent NYVAC-C-KC vectors induced higher HIV-specific responses, as measured by IFN-g ELISpot assay, than the replication defective NYVAC-C vectors. Application through scarification only required one immunization to induce maximum HIV-specific immune responses. This method simultaneously induced relatively lower anti-vector responses. In contrast, two to three immunizations were required when the NYVAC-C-KC vectors were given by intradermal or intramuscular injection and this method tended to generate slightly lower responses. Responses were predominantly directed against Env in the animals that received NYVAC-C-KC vectors expressing HIV-1 Env, Gag, Pol, Nef, while Gag responses were dominant in the NYVAC-C-KC HIV-1 Gag, Pol, Nef immunized animals. Conclusion: The current study demonstrates that NYVAC replication competent vectors were well tolerated and showed increased immunogenicity as compared to replication defective vectors. Further studies are needed to evaluate the most efficient route of immunization and to explore the use of these replication competent NYVAC vectors in prime/boost combination with gp120 proteinbased vaccine candidates. This study was performed within the Poxvirus T-cell Vaccine Discovery Consortium (PTVDC) which is part of the CAVD program.
Resumo:
In rodents and nonhuman primates subjected to spinal cord lesion, neutralizing the neurite growth inhibitor Nogo-A has been shown to promote regenerative axonal sprouting and functional recovery. The goal of the present report was to re-examine the data on the recovery of the primate manual dexterity using refined behavioral analyses and further statistical assessments, representing secondary outcome measures from the same manual dexterity test. Thirteen adult monkeys were studied; seven received an anti-Nogo-A antibody whereas a control antibody was infused into the other monkeys. Monkeys were trained to perform the modified Brinkman board task requiring opposition of index finger and thumb to grasp food pellets placed in vertically and horizontally oriented slots. Two parameters were quantified before and following spinal cord injury: (i) the standard 'score' as defined by the number of pellets retrieved within 30 s from the two types of slots; (ii) the newly introduced 'contact time' as defined by the duration of digit contact with the food pellet before successful retrieval. After lesion the hand was severely impaired in all monkeys; this was followed by progressive functional recovery. Remarkably, anti-Nogo-A antibody-treated monkeys recovered faster and significantly better than control antibody-treated monkeys, considering both the score for vertical and horizontal slots (Mann-Whitney test: P = 0.05 and 0.035, respectively) and the contact time (P = 0.008 and 0.005, respectively). Detailed analysis of the lesions excluded the possibility that this conclusion may have been caused by differences in lesion properties between the two groups of monkeys.
Resumo:
In order to improve the immunogenicity of currently available non-replicating pox virus HIV vaccine vectors, NYVAC was genetically modified through re-insertion of two host range genes (K1L and C7L), resulting in restored replicative capacity in human cells. In the present study these vectors, expressing either a combination of the HIV-1 clade C antigens Env, Gag, Pol, Nef, or a combination of Gal, Pol, Nef were evaluated for safety and immunogenicity in rhesus macaques, which were immunized at weeks 0, 4 and 12 either by scarification (conventional poxvirus route of immunization), intradermal or by intramuscular injection (route used in previous vaccine studies).Replication competent NYVAC-C-KC vectors induced higher HIV-specific responses, as measured by IFN- ELISpot assay, than the replication defective NYVAC-C vectors. Application through scarification only required one immunization to induce maximum HIV-specific immune responses. This method simultaneously induced relatively lower anti-vector responses. In contrast, two to three immunizations were required when the NYVAC-C-KC vectors were given by intradermal or intramuscular injection and this method tended to generate slightly lower responses. Responses were predominantly directed against Env in the animals that received NYVAC-C-KC vectors expressing HIV-1 Env, Gag, Pol, Nef, while Gag responses were dominant in the NYVAC-C-KC HIV-1 Gag, Pol, Nef immunized animals.The current study demonstrates that NYVAC replication competent vectors were well tolerated and showed increased immunogenicity as compared to replication defective vectors. Further studies are needed to evaluate the most efficient route of immunization and to explore the use of these replication competent NYVAC vectors in prime/boost combination with gp120 protein-based vaccine candidates. This studies was performed within the Poxvirus T-cell Vaccine Discovery Consortium (PTVDC) which is part of the CAVD program.
Resumo:
Background: To enhance the induction of insert specific immune responses, a new generation of replication competent poxvirus vectors was designed and evaluated against non-replicating poxvirus vectors in a HIV vaccine study in non human primates.Methods: Rhesus macaques were immunized with either the non-replicating variant NYVAC-GagPolNef HIV-1 clade C or the replicating NYVAC-GagPolNef-C-KC, boosted with HIVGag- PolEnv-SLP and immune responses were monitored.Results: Gag-specific T-cell responses were only detected in animals immunized with the replicating NYVAC-GagPolNef-C-KC variant. Further enhancement and broadening of the immune response was studied by boosting the animals with novel T-cell immunogens HIVconsv synthetic long peptides (SLP), which direct vaccine-induced responses to the most conserved regions of HIV and contain both CD4 T-helper and CD8 CTL epitopes. The adjuvanted (Montanide ISA-720) SLP divided into subpools and delivered into anatomically separate sites enhanced the Gag-specific T-cell responses in 4 out of 6 animals, to more than 1000 SFC/106 PBMC in some animals. Furthermore, the SLP immunization broadened the immune response in 4 out of 6 animals to multiple Pol epitopes. Even Env-specific responses, to which the animals had not been primed, were induced by SLP in 2 out of 6 animals.Conclusion: This new immunization strategy of priming with replicating competent poxvirus NYVAC-HIVGagPolNef and boosting with HIVGagPolEnv-SLP, induced strong and broad Tcell responses and provides a promising new HIV vaccine approach. This study was performed within the Poxvirus T-cell Vaccine Discovery Consortium (PTVDC) which is part of the CAVD program.
Resumo:
The amygdala is part of a neural network that contributes to the regulation of emotional behaviors. Rodents, especially rats, are used extensively as model organisms to decipher the functions of specific amygdala nuclei, in particular in relation to fear and emotional learning. Analysis of the role of the nonhuman primate amygdala in these functions has lagged work in the rodent but provides evidence for conservation of basic functions across species. Here we provide quantitative information regarding the morphological characteristics of the main amygdala nuclei in rats and monkeys, including neuron and glial cell numbers, neuronal soma size, and individual nuclei volumes. The volumes of the lateral, basal, and accessory basal nuclei were, respectively, 32, 39, and 39 times larger in monkeys than in rats. In contrast, the central and medial nuclei were only 8 and 4 times larger in monkeys than in rats. The numbers of neurons in the lateral, basal, and accessory basal nuclei were 14, 11, and 16 times greater in monkeys than in rats, whereas the numbers of neurons in the central and medial nuclei were only 2.3 and 1.5 times greater in monkeys than in rats. Neuron density was between 2.4 and 3.7 times lower in monkeys than in rats, whereas glial density was only between 1.1 and 1.7 times lower in monkeys than in rats. We compare our data in rats and monkeys with those previously published in humans and discuss the theoretical and functional implications that derive from our quantitative structural findings.
Resumo:
The current availability of five complete genomes of different primate species allows the analysis of genetic divergence over the last 40 million years of evolution. We hypothesized that the interspecies differences observed in susceptibility to HIV-1 would be influenced by the long-range selective pressures on host genes associated with HIV-1 pathogenesis. We established a list of human genes (n = 140) proposed to be involved in HIV-1 biology and pathogenesis and a control set of 100 random genes. We retrieved the orthologous genes from the genome of humans and of four nonhuman primates (Pan troglodytes, Pongo pygmaeus abeli, Macaca mulatta, and Callithrix jacchus) and analyzed the nucleotide substitution patterns of this data set using codon-based maximum likelihood procedures. In addition, we evaluated whether the candidate genes have been targets of recent positive selection in humans by analyzing HapMap Phase 2 single-nucleotide polymorphisms genotyped in a region centered on each candidate gene. A total of 1,064 sequences were used for the analyses. Similar median K(A)/K(S) values were estimated for the set of genes involved in HIV-1 pathogenesis and for control genes, 0.19 and 0.15, respectively. However, genes of the innate immunity had median values of 0.37 (P value = 0.0001, compared with control genes), and genes of intrinsic cellular defense had K(A)/K(S) values around or greater than 1.0 (P value = 0.0002). Detailed assessment allowed the identification of residues under positive selection in 13 proteins: AKT1, APOBEC3G, APOBEC3H, CD4, DEFB1, GML, IL4, IL8RA, L-SIGN/CLEC4M, PTPRC/CD45, Tetherin/BST2, TLR7, and TRIM5alpha. A number of those residues are relevant for HIV-1 biology. The set of 140 genes involved in HIV-1 pathogenesis did not show a significant enrichment in signals of recent positive selection in humans (intraspecies selection). However, we identified within or near these genes 24 polymorphisms showing strong signatures of recent positive selection. Interestingly, the DEFB1 gene presented signatures of both interspecies positive selection in primates and intraspecies recent positive selection in humans. The systematic assessment of long-acting selective pressures on primate genomes is a useful tool to extend our understanding of genetic variation influencing contemporary susceptibility to HIV-1.
Resumo:
Multisensory and sensorimotor integrations are usually considered to occur in superior colliculus and cerebral cortex, but few studies proposed the thalamus as being involved in these integrative processes. We investigated whether the organization of the thalamocortical (TC) systems for different modalities partly overlap, representing an anatomical support for multisensory and sensorimotor interplay in thalamus. In 2 macaque monkeys, 6 neuroanatomical tracers were injected in the rostral and caudal auditory cortex, posterior parietal cortex (PE/PEa in area 5), and dorsal and ventral premotor cortical areas (PMd, PMv), demonstrating the existence of overlapping territories of thalamic projections to areas of different modalities (sensory and motor). TC projections, distinct from the ones arising from specific unimodal sensory nuclei, were observed from motor thalamus to PE/PEa or auditory cortex and from sensory thalamus to PMd/PMv. The central lateral nucleus and the mediodorsal nucleus project to all injected areas, but the most significant overlap across modalities was found in the medial pulvinar nucleus. The present results demonstrate the presence of thalamic territories integrating different sensory modalities with motor attributes. Based on the divergent/convergent pattern of TC and corticothalamic projections, 4 distinct mechanisms of multisensory and sensorimotor interplay are proposed.