3 resultados para resource consents
em Université de Lausanne, Switzerland
Resumo:
Background and Aims The males and females of many dioecious plant species differ from one another in important life-history traits, such as their size. If male and female reproductive functions draw on different resources, for example, one should expect males and females to display different allocation strategies as they grow. Importantly, these strategies may differ not only between the two sexes, but also between plants of different age and therefore size. Results are presented from an experiment that asks whether males and females of Mercurialis annua, an annual plant with indeterminate growth, differ over time in their allocation of two potentially limiting resources (carbon and nitrogen) to vegetative (below-and above-ground) and reproductive tissues.Methods Comparisons were made of the temporal patterns of biomass allocation to shoots, roots and reproduction and the nitrogen content in the leaves between the sexes of M. annua by harvesting plants of each sex after growth over different periods of time.Key Results and Conclusions Males and females differed in their temporal patterns of allocation. Males allocated more to reproduction than females at early stages, but this trend was reversed at later stages. Importantly, males allocated proportionally more of their biomass towards roots at later stages, but the roots of females were larger in absolute terms. The study points to the important role played by both the timing of resource deployment and the relative versus absolute sizes of the sinks and sources in sexual dimorphism of an annual plant.
Resumo:
Breakthrough technologies which now enable the sequencing of individual genomes will irreversibly modify the way diseases are diagnosed, predicted, prevented and treated. For these technologies to reach their full potential requires, upstream, access to high-quality biomedical data and samples from large number of properly informed and consenting individuals and, downstream, the possibility to transform the emerging knowledge into a clinical utility. The Lausanne Institutional Biobank was designed as an integrated, highly versatile infrastructure to harness the power of these emerging technologies and catalyse the discovery and development of innovative therapeutics and biomarkers, and advance the field of personalised medicine. Described here are its rationale, design and governance, as well as parallel initiatives which have been launched locally to address the societal, ethical and technological issues associated with this new bio-resource. Since January 2013, inpatients admitted at Lausanne CHUV University Hospital have been systematically invited to provide a general consent for the use of their biomedical data and samples for research, to complete a standardised questionnaire, to donate a 10-ml sample of blood for future DNA extraction and to be re-contacted for future clinical trials. Over the first 18 months of operation, 14,459 patients were contacted, and 11,051 accepted to participate in the study. This initial 18-month experience illustrates that a systematic hospital-based biobank is feasible; it shows a strong engagement in research from the patient population in this University Hospital setting, and the need for a broad, integrated approach for the future of medicine to reach its full potential.
Resumo:
Sertoli cells (SCs), the only somatic cells within seminiferous tubules, associate intimately with developing germ cells. They not only provide physical and nutritional support but also secrete factors essential to the complex developmental processes of germ cell proliferation and differentiation. The SC transcriptome must therefore adapt rapidly during the different stages of spermatogenesis. We report comprehensive genome-wide expression profiles of pure populations of SCs isolated at 5 distinct stages of the first wave of mouse spermatogenesis, using RNA sequencing technology. We were able to reconstruct about 13 901 high-confidence, nonredundant coding and noncoding transcripts, characterized by complex alternative splicing patterns with more than 45% comprising novel isoforms of known genes. Interestingly, roughly one-fifth (2939) of these genes exhibited a dynamic expression profile reflecting the evolving role of SCs during the progression of spermatogenesis, with stage-specific expression of genes involved in biological processes such as cell cycle regulation, metabolism and energy production, retinoic acid synthesis, and blood-testis barrier biogenesis. Finally, regulatory network analysis identified the transcription factors endothelial PAS domain-containing protein 1 (EPAS1/Hif2α), aryl hydrocarbon receptor nuclear translocator (ARNT/Hif1β), and signal transducer and activator of transcription 1 (STAT1) as potential master regulators driving the SC transcriptional program. Our results highlight the plastic transcriptional landscape of SCs during the progression of spermatogenesis and provide valuable resources to better understand SC function and spermatogenesis and its related disorders, such as male infertility.