21 resultados para research bulletin

em Université de Lausanne, Switzerland


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Evidence concerning the presence or absence of common neuronglia lineages in the postnatal mammalian central nervous system is still a matter of speculation. We address this problem using optic nerve explants, which show an extremely long survival in culture. Morphological, immunocytochemical and immunochemical methods were applied. The results obtained from in vitro tissue were compared with optic nerves (ONs) and whole-brain samples from animals of different ages. Newborn rat ONs represented the starting material of our tissue culture; they are composed of unmyelinated axons, astrocytes and progenitor cells but devoid of neuronal cell bodies. At this age, Western blots of ONs were positively stained by neurofilament and synapsin I specific antibodies. These bands increased in intensity during postnatal in situ development. In explant cultures, the glia cells reach a stage of functional differentiation and they maintain, together with undifferentiated cells, a complex histotypic organization. After 6 days in vitro, neurofilaments and synapsin I could not be detected on immunoblots, indicating that 1) axonal degeneration was completed, and 2) neuronal somata were absent at the time. Surprisingly, after about 4-5 weeks in culture, a new cell type appeared, which showed characteristics typical of neurons. After 406 days in vitro, neurofilaments and synapsin I were unequivocally detectable on Western blots. Furthermore, both immunocytochemical staining and light and electron microscopic examinations corroborated the presence of this earlier-observed cell type. These in vitro results clearly show the high developmental plasticity of ON progenitor cells, even late in development. The existence of a common neuron-glia precursor, which never gives rise to neurons in situ, is suggested.

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The differential distribution and phosphorylation of tau proteins in cat cerebellum was studied with two well characterized antibodies, TAU-1 and TAU-2. TAU-1 detects tau proteins in axons, and the epitope in perikarya and dendrites is masked by phosphorylation. TAU-2 detects a phosphorylation-independent epitope on tau proteins. The molecular composition of tau proteins in the range of 45 kD to 64 kD at birth changed after the first postnatal month to a set of several adult variants of higher molecular weights in the range of 59 kD to 95 kD. The appearance of tau proteins in subsets of axons corresponds to the axonal maturation of cerebellar local-circuit neurons in granular and molecular layers and confirms previous studies. Tau proteins were also identified in synapses by immunofluorescent double-staining with synapsin I, located in the pinceau around the Purkinje cells, and in glomeruli. Dephosphorylation of juvenile cerebellar tissue by alkaline phosphatase indicated indirectly the presence of differentially phosphorylated tau forms mainly in juvenile ages. Additional TAU-1 immunoreactivity was unmasked in numerous perikarya and dendrites of stellate cells, and in cell bodies of granule cells. Purkinje cell bodies were stained transiently at juvenile ages. During postnatal development, the intensity of the phosphate-dependent staining decreased, suggesting that phosphorylation of tau proteins in perikarya and dendrites may be essential for early steps in neuronal morphogenesis during cat cerebellum development.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of the present study was to characterize the discharge properties of single neurons in the dorsal nucleus of the lateral lemniscus (DNLL) of the rat. In the absence of acoustic stimulation, two types of spontaneous discharge patterns were observed: units tended to fire in a bursting or in a nonbursting mode. The distribution of units in the DNLL based on spontaneous firing rate followed a rostrocaudal gradient: units with high spontaneous rates were most commonly located in the rostral part of the DNLL, whereas in the caudal part units had lower spontaneous discharge rates. The most common response pattern of DNLL units to 200 ms binaural noise bursts contained a prominent onset response followed by a lower but steady-state response and an inhibitory response in the early-off period. Thresholds of response to noise bursts were on average higher for DNLL units than for units recorded in the inferior colliculus under the same experimental conditions. The DNLL units were arranged according to a mediolateral sensitivity gradient with the lowest threshold units in the most lateral part of the nucleus. In the rat, as in other mammals, the most common DNLL binaural input type was an excitatory response to contralateral ear stimulation and inhibitory response to ipsilateral ear stimulation (EI type). Pure tone bursts were in general a more effective stimulus compared to noise bursts. Best frequency (BF) was established for 97 DNLL units and plotted according to their spatial location. The DNLL exhibits a loose tonotopic organization, where there is a concentric pattern with high BF units located in the most dorsal and ventral parts of the DNLL and lower BF units in the middle part of the nucleus.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fixation enhances cellular morphology and reduces loss of molecules during tissue processing. Antibodies against fixation-resistant epitopes are very useful, because they allow an immunocytochemical detection in tissue of better preserved morphology. However, fixatives can alter antigenicity and adversely affect the result of immunohistochemical procedures. To address this problem, this study examined the feasibility of generating antibodies to a paraformaldehyde-fixed antigen for use in immunohistochemical procedures. The large subunit of neurofilament proteins was selected for this study. Crude neurofilament proteins were isolated and separated by SDS-polyacrylamide gel electrophoresis. The large subunit of neurofilaments (NF-H) was electroeluted from the electrophoresis gel and exposed to paraformaldehyde, and used for immunization of a rabbit. The rabbit antiserum was affinity purified on CNBr-sepharose immobilized neurofilament proteins. On Western blots, the antibody reacted with the NF-H protein in a phosphorylation-dependent manner. In aldehyde-fixed cerebellum, the antibody strongly stained axons. In contrast, in alcohol-fixed cryostat sections the immunocytochemical detection was substantially reduced. The procedure presented in this study, involving a simple pretreatment of the immunogen, allows for the generation of an antibody that may be used in immunohistochemical studies where localization of the immunogen may be reduced or even lost by aldehyde fixation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Apoptosis is induced by the cleavage of a subset of cellular proteins by proteases of the caspase family. Numerous (hundreds) caspase substrates have been described but only for a few of them is the function of their cleavage by caspases well understood. In this review, apoptosis and caspases will first be introduced. The main focus will then be directed to the caspase substrates, the actual "workers" doing the job of mediating and regulating the apoptotic process. The caspase substrates whose functions upon cleavage have been carefully investigated and those that are potentially involved in neurodegenerative diseases will be discussed in detail.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

For decades, astrocytes have been regarded as passive partners of neurons in central nervous system (CNS) function. Studies of the last 20 years, however, challenged this view by demonstrating that astrocytes possess functional receptors for neurotransmitters and respond to their stimulation via release of gliotransmitters, including glutamate. Notably, astrocytes react to synaptically released neurotransmitters with intracellular calcium ([Ca(2+)]) elevations, which result in the release of glutamate via regulated exocytosis and, possibly, other mechanisms. These findings have led to a new concept of neuron-glia intercommunication where astrocytes play an unsuspected dynamic role by integrating neuronal inputs and modulating synaptic activity. The additional observation that glutamate release from astrocytes is controlled by molecules linked to inflammatory reactions, such as the cytokine tumor necrosis factor alpha (TNFalpha) and prostaglandins (PGs), suggests that glia-to-neuron signalling may be sensitive to changes in the production of these mediators occurring in pathological conditions. Indeed, a local, parenchymal brain inflammatory reaction (neuroinflammation) characterized by astrocytic and microglial activation has been reported in several neurodegenerative disorders, including AIDS dementia complex, Alzheimer's disease and amyotrophic lateral sclerosis. This transition may be accompanied by functional de-regulation and even degeneration of the astrocytes with the consequent disruption of the cross-talk normally occurring between these cells and neurons. Incorrect neuron-astrocyte interactions may be involved in neuronal derangement and contribute to disease development. The findings reported in this review suggest that a better comprehension of the glutamatergic interplay between neurons and astrocytes may provide information about normal brain function and also highlight potential molecular targets for therapeutic interventions in pathology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In order to understand relationships between executive and structural deficits in the frontal cortex of patients within normal aging or Alzheimer's disease, we studied frontal pathological changes in young and old controls compared to cases with sporadic (AD) or familial Alzheimer's disease (FAD). We performed a semi-automatic computer assisted analysis of the distribution of beta-amyloid (Abeta) deposits revealed by Abeta immunostaining as well as of neurofibrillary tangles (NFT) revealed by Gallyas silver staining in Brodman areas 10 (frontal polar), 12 (ventro-infero-median) and 24 (anterior cingular), using tissue samples from 5 FAD, 6 sporadic AD and 10 control brains. We also performed densitometric measurements of glial fibrillary acidic protein, principal compound of intermediate filaments of astrocytes, and of phosphorylated neurofilament H and M epitopes in areas 10 and 24. All regions studied seem almost completely spared in normal old controls, with only the oldest ones exhibiting a weak percentage of beta-amyloid deposit and hardly any NFT. On the contrary, all AD and FAD cases were severely damaged as shown by statistically significant increased percentages of beta-amyloid deposit, as well as by a high number of NFT. FAD cases (all from the same family) had statistically more beta-amyloid and GFAP than sporadic AD cases in both areas 10 and 24 and statistically more NFT only in area 24. The correlation between the percentage of beta-amyloid and the number of NFT was significant only for area 24. Altogether, these data suggest that the frontal cortex can be spared by AD type lesions in normal aging, but is severely damaged in sporadic and still more in familial Alzheimer's disease. The frontal regions appear to be differentially vulnerable, with area 12 having the less amyloid burden, area 24 the less NFT and area 10 having both more amyloid and more NFT. This pattern of damage in frontal regions may represent a strong neuroanatomical support for the deterioration of attention and cognitive capacities as well as for the presence of emotional and behavioral troubles in AD patients.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Firstly discovered in rete testis fluid, clusterin is a glycoprotein present in most of the other biological fluids. Several isoforms of clusterin are encoded from a single gene located on chromosome 8 in human species. Among the different isoforms, the secreted form of clusterin is expressed by a variety of tissues, including the nervous system under normal conditions. This form is presumed to play an anti-apoptotic role and seems to be a major determinant in cell survival and neuroplasticity after stroke. In animal models of this pathology, both neuronal and astroglial subpopulations express high levels of clusterin early after the ischemic damage. Recent lines of evidence point also to its possible involvement in neurodegenerative disorders. It is thought that in Alzheimer's disease the association between amyloidogenic peptides and clusterin contributes to limit Aβ species misfolding and facilitates their clearance from the extracellular space. Thus, intercellular and intracellular factors that modulate local clusterin expression in the nervous system may represent potent targets for neurodegenerative disease therapies. In this review we provide a critical overview of the most recent data on the involvement of clusterin in neurodegenerative diseases with special reference to their putative clinical relevance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The advancement of medical sciences during the last century has resulted in a considerable increase in life expectancy. As more people live to old age, one of the most fundamental questions of the 21st century is whether the number of individuals suffering from dementia will also continue to increase. Alzheimer's disease (AD) accounts for the majority of cases of dementia in the elderly, but there is currently no curative treatment available. Several strategies have been introduced for treatment, the most recent strategy of which was the immunization of patients using antibodies against Abeta, which is a naturally occurring, even though misfolded peptide in the AD brain. Both active and passive immunization routes have been shown to reduce the pathology associated with Abeta accumulation in brains of genetically designed animal models. However, despite tremendous efforts, no unequivocal proof of therapeutic efficacy could be shown in AD patients. Particularly, the persistence of the neurofibrillary tangles in immunized brains and the issue of inducing cerebral amyloid angiopathy are major limiting factors of antibody therapy. Furthermore, physical activity, a healthy immune system and nutritional habits are suggested to protect against the onset of age-associated dementia. Thus, accumulative evidence suggests that an early integrated strategy, combining pharmacological, immunological, nutritional and life-style factors, is the most pragmatic approach to delay the onset and progression of age-associated dementia.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Only a small percentage of neurodegenerative diseases like Alzheimer's disease and Parkinson's disease is directly related to familial forms. The etiology of the most abundant, sporadic forms seems to involve both genetic and environmental factors. Environmental compounds are now extensively studied for their possible contribution to neurodegeneration. Chemicals were found which were able to reproduce symptoms of known neurodegenerative diseases, others may either predispose to the onset of neurodegeneration, or exacerbate distinct pathogenic processes of these diseases. In any case, in vitro studies performed with models presenting various degrees of complexity have shown that many environmental compounds have the potential to cause neurodegeneration, through a variety of pathways similar to those described in neurodegenerative diseases. Since the population is exposed to a huge number of potentially neurotoxic compounds, there is an important need for rapid and efficient procedures for hazard evaluation. Xenobiotics elicit a cascade of reactions that, most of the time, involve numerous interactions between the different brain cell types. A reliable in vitro model for the detection of environmental toxins potentially at risk for neurodegenerative diseases should therefore allow maximal cell-cell interactions and multiparametric endpoints determination. The combined use of in vitro models and new analytical approaches using "omics" technologies should help to map toxicity pathways, and advance our understanding of the possible role of xenobiotics in the etiology of neurodegenerative diseases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Microtubule-associated protein 1B, MAP1B, is one of the major growth associated and cytoskeletal proteins in neuronal and glial cells. It is present as a full length protein or may be fragmented into a heavy chain and a light chain. It is essential to stabilize microtubules during the elongation of dendrites and neurites and is involved in the dynamics of morphological structures such as microtubules, microfilaments and growth cones. MAP1B function is modulated by phosphorylation and influences microtubule stability, microfilaments and growth cone motility. Considering its large size, several interactions with a variety of other proteins have been reported and there is increasing evidence that MAP1B plays a crucial role in the stability of the cytoskeleton and may have other cellular functions. Here we review molecular and functional aspects of this protein, evoke its role as a scaffold protein and have a look at several pathologies where the protein may be involved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Numerous epidemiological studies and some pharmacological clinical trials show the close connection between Alzheimer disease (AD) and type 2 diabetes (T2D) and thereby, shed more light into the existence of possible similar pathogenic mechanisms between these two diseases. Diabetes increases the risk of developing AD and sensitizers of insulin currently used as diabetes drugs can efficiently slow cognitive decline of the neurological disorder. Deposits of amyloid aggregate and hyperphosphorylation of tau, which are hallmarks of AD, have been also found in degenerating pancreatic islets beta-cells of patients with T2D. These events may have a causal role in the pathogenesis of the two diseases. Increased c-Jun NH(2)-terminal kinase (JNK) activity is found in neurofibrillary tangles (NFT) of AD and promotes programmed cell death of beta-cells exposed to a diabetic environment. The JNK-interacting protein 1 (JIP-1), also called islet brain 1 (IB1) because it is mostly expressed in the brain and islets, is a key regulator of the JNK pathway in neuronal and beta-cells. JNK, hyperphosphorylated tau and IB1/JIP-1 all co-localize with amyloids deposits in NFT and islets of AD and patients with T2D. This review discusses the role of the IB1/JIP-1 and the JNK pathway in the molecular pathogenesis of AD and T2D.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Protein oxidation and ubiquitination of brain proteins are part of mechanisms that modulate protein function or that inactivate proteins and target misfolded proteins to degradation. In this study, we focused on brain aging and on mechanism involved in neurodegeneration such as events occurring in Alzheimer's disease (AD). The goal was to identify differences in nitrosylated proteins - at cysteine residues, and in the composition of ubiquinated proteins between aging and Alzheimer's samples by using a proteomic approach. A polyclonal anti-S-nitrosyl-cysteine, a mono- and a polyclonal anti-ubiquitin antibody were used for the detection of modified or ubiquitinated proteins in middle-aged and aged human entorhinal autopsy brains tissues of 14 subjects without neurological signs and 8 Alzheimer's patients. Proteins were separated by one- and two-dimensional gel electrophoresis and analyzed by Coomassie blue and immuno-blot staining. We identified that the glial fibrillary acidic and tau proteins are more ubiquitinated in brain tissues of Alzheimer's patients. Furthermore, glial fibrillary proteins were also found in nitrosylated state and further characterized by 2D Western blots and identified. Since reactive astrocytes localized prominently around senile plaques one can speculate that elements of plaques such as beta-amyloid proteins may activate surrounding glial elements and proteins.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The performance of mice expressing PDAPP (+/+ or +/-) was studied in the Morris place navigation task. Different lines of questions were investigated using PDAPP+/- mice in which the activity of the cytokine Tumor Necrosing Factor alpha (TNFalpha) was attenuated by chronic treatment with anti-TNF or deleting TNFalpha (TNF-/-). Two different categories of behavior were analyzed in adult (6 months) and middle aged (15 months) subjects. Classically, the cognitive performance was assessed from the escape efficacy and quantitative bias toward the training position in a Morris water maze. Second, stereotyped circling was quantified, along with more qualitative behavioral impairments such as self-mutilation or increased reactivity. Our results can be summarized as follows. (1) All of the PDAPP mice expressed reduced cognitive performance in the Morris task, but only those with a clear-cut amyloid burden in the hippocampus showed behavioral abnormalities such as stereotyped circling. (2) Chronic treatment with anti-TNF prevented the development of pathological circling in the 6-month-old mice but not in the 15-month-old mice and had no significant effect on amyloid burden. (3) The absence of TNFalpha prevented the development of stereotyped circling in 6- and 15-month-old mice but increased amyloid burden after 15 months. These data indicate that PDAPP mice express cognitive impairments disregarding absence of TNF. The pathological behavioral anomalies related to the PDAPP mutation seem reduced by treatments interfering with TNFalpha.