1 resultado para random-variables
em Université de Lausanne, Switzerland
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (4)
- Adam Mickiewicz University Repository (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (1)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- Aquatic Commons (23)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (19)
- Aston University Research Archive (7)
- Biblioteca de Teses e Dissertações da USP (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (6)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (10)
- Biblioteca Digital de la Universidad Católica Argentina (1)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (6)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (7)
- Boston University Digital Common (3)
- Brunel University (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (13)
- CaltechTHESIS (10)
- Cambridge University Engineering Department Publications Database (106)
- CentAUR: Central Archive University of Reading - UK (7)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (82)
- Cochin University of Science & Technology (CUSAT), India (6)
- Collection Of Biostatistics Research Archive (2)
- CORA - Cork Open Research Archive - University College Cork - Ireland (4)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- CUNY Academic Works (1)
- Department of Computer Science E-Repository - King's College London, Strand, London (2)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons at Florida International University (1)
- DigitalCommons@The Texas Medical Center (4)
- Duke University (13)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (7)
- FAUBA DIGITAL: Repositorio institucional científico y académico de la Facultad de Agronomia de la Universidad de Buenos Aires (11)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Funes: Repositorio digital de documentos en Educación Matemática - Colombia (5)
- Helda - Digital Repository of University of Helsinki (25)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (185)
- Instituto Politécnico do Porto, Portugal (2)
- Massachusetts Institute of Technology (4)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (15)
- QSpace: Queen's University - Canada (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (111)
- Queensland University of Technology - ePrints Archive (176)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional da Universidade de Brasília (1)
- Repositório Institucional da Universidade Federal de São Paulo - UNIFESP (1)
- Repositorio Institucional de la Universidad Nacional Agraria (4)
- Repositorio Institucional de la Universidad Pública de Navarra - Espanha (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (11)
- Universidad de Alicante (5)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (15)
- Universidade Complutense de Madrid (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (3)
- Universita di Parma (1)
- Universitat de Girona, Spain (6)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (1)
- Université de Montréal, Canada (7)
- University of Michigan (1)
- University of Queensland eSpace - Australia (8)
- University of Southampton, United Kingdom (4)
- University of Washington (1)
Resumo:
In this paper we propose a highly accurate approximation procedure for ruin probabilities in the classical collective risk model, which is based on a quadrature/rational approximation procedure proposed in [2]. For a certain class of claim size distributions (which contains the completely monotone distributions) we give a theoretical justification for the method. We also show that under weaker assumptions on the claim size distribution, the method may still perform reasonably well in some cases. This in particular provides an efficient alternative to a related method proposed in [3]. A number of numerical illustrations for the performance of this procedure is provided for both completely monotone and other types of random variables.