23 resultados para rainbow trout Oncorynchus mykiss
em Université de Lausanne, Switzerland
Resumo:
Of all Pacific salmonids, Chinook salmon Oncorhynchus tshawytscha display the greatest variability in return times to freshwater. The molecular mechanisms of these differential return times have not been well described. Current methods, such as long serial analysis of gene expression (LongSAGE) and microarrays, allow gene expression to be analyzed for thousands of genes simultaneously. To investigate whether differential gene expression is observed between fall- and spring-run Chinook salmon from California's Central Valley, LongSAGE libraries were constructed. Three libraries containing between 25,512 and 29,372 sequenced tags (21 base pairs/tag) were generated using messenger RNA from the brains of adult Chinook salmon returning in fall and spring and from one ocean-caught Chinook salmon. Tags were annotated to genes using complementary DNA libraries from Atlantic salmon Salmo salar and rainbow trout O. mykiss. Differentially expressed genes, as estimated by differences in the number of sequence tags, were found in all pairwise comparisons of libraries (freshwater versus saltwater = 40 genes; fall versus spring = 11 genes: and spawning versus nonspawning = 51 genes). The gene for ependymin, an extracellular glycoprotein involved in behavioral plasticity in fish, exhibited the most differential expression among the three groupings. Reverse transcription polymerase chain reaction analysis verified the differential expression of ependymin between the fall- and spring-run samples. These LongSAGE libraries, the first reported for Chinook salmon, provide a window of the transcriptional changes during Chinook salmon return migration to freshwater and spawning and increase the amount of expressed sequence data.
Resumo:
Supportive breeding is an important tool in conservation management, but its long-term genetic consequences are not well understood. Among the factors that could affect the genetics of the offspring is sperm competition as a consequence of mixed-milt fertilizations - which is still a common practice in many hatcheries. Here, we measured and combined the relevant factors to predict the genetic consequences of various kinds of hatchery-induced sperm competition. We drew a random sample of male Coregonus zugensis (an Alpine whitefish) from a hatchery program and quantified their in vitro sperm potency by integrating sperm velocity during the first minute after activation, and their in vitro milt potency by multiplying sperm potency with milt volume and sperm cell density. We found that not controlling for sperm density and/or milt volume would, at a constant population size, decrease the variance effective number of male breeders N-em by around 40-50%. This loss would decrease with increasing population growth rates. Partial multifactorial breeding and the separate rearing of in total 799 batches of eggs revealed that neither sperm nor milt potency was significantly linked to egg survival. Sperm and milt potency was also not significantly correlated to other potential quality measures such as breeding tubercles or condition factor. However, sperm potency was correlated to male age and milt potency to male growth rate. Our findings suggest that hatchery-induced sperm competition not only increases the loss of genetic variation but may also induce artificial selection, depending on the fertilization protocol. By not equalizing milt volume in multi-male fertilization hatchery managers lose relatively more genetic variation and give fast-growing males a reproductive advantage, while equalizing milt volume reduces the loss of genetic variation and favors younger males who may have fast sperm to compensate for their subdominance at the spawning place. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Epitheliocystis is an infectious disease affecting gills and skin of various freshwater and marine fishes, associated with high mortality and reduced growth of survivors. Candidatus Piscichlamydia salmonis and Clavochlamydia salmonicola have recently been identified as aetiological agents of epitheliocystis in Atlantic Salmon. In addition, several other members of the Chlamydiales order have been identified in other fish species. To clarify the pathogenicity of Chlamydia-like organisms towards fishes, we investigated the permissivity of two fish cell lines, EPC-175 (Fathead Minnow) and RTG-2 (rainbow trout) to three Chlamydia-related bacteria: Waddlia chondrophila, Parachlamydia acanthamoebae and Estrella lausannensis. Quantitative PCR and immunofluorescence demonstrated that W. chondrophila and, to a lesser extent, E. lausannensis were able to replicate in the two cell lines tested. Waddlia chondrophila multiplied rapidly in its host cell and a strong cytopathic effect was observed. During E. lausannensis infection, we observed a limited replication of the bacteria not followed by host cell lysis. Very limited replication of P. acanthamoebae was observed in both cell lines tested. Given its high infectivity and cytopathic effect towards fish cell lines, W. chondrophila represents the most interesting Chlamydia-related bacteria to be used to develop an in vivo model of epitheliocystis disease in fishes.
Resumo:
BACKGROUND: Males that are successful in intra-sexual competition are often assumed to be of superior quality. In the mating system of most salmonid species, intensive dominance fights are common and the winners monopolise most mates and sire most offspring. We drew a random sample of mature male brown trout (Salmo trutta) from two wild populations and determined their dominance hierarchy or traits linked to dominance. The fish were then stripped and their sperm was used for in vitro fertilisations in two full-factorial breeding designs. We recorded embryo viability until hatching in both experiments, and juvenile survival during 20 months after release into a natural streamlet in the second experiment. Since offspring of brown trout get only genes from their fathers, we used offspring survival as a quality measure to test (i) whether males differ in their genetic quality, and if so, (ii) whether dominance or traits linked to dominance reveal 'good genes'. RESULTS: We found significant additive genetic variance on embryo survival, i.e. males differed in their genetic quality. Older, heavier and larger males were more successful in intra-sexual selection. However, neither dominance nor dominance indicators like body length, weight or age were significantly linked to genetic quality measured as embryo or juvenile survival. CONCLUSION: We found no evidence that females can improve their offspring's genetic viability by mating with large and dominant males. If there still were advantages of mating with dominant males, they may be linked to non-genetic benefits or to genetic advantages that are context dependent and therefore possibly not revealed under our experimental conditions - even if we found significant additive genetic variation for embryo viability under such conditions.
Resumo:
Mating with attractive or dominant males is often predicted to offer indirect genetic benefits to females, but it is still largely unclear how important such non-random mating can be with regard to embryo viability. We sampled a natural population of adult migratory brown trout (Salmo trutta), bred them in vitro in a half-sib breeding design to separate genetic from maternal environmental effects, raised 2098 embryos singly until hatching, and exposed them experimentally to different levels of pathogen stress at a late embryonic stage. We found that the embryos' tolerance to the induced pathogen stress was linked to the major histocompatibility complex (MHC) of their parents, i.e. certain MHC genotypes appeared to provide better protection against infection than others. We also found significant additive genetic variance for stress tolerance. Melanin-based dark skin patterns revealed males with 'good genes', i.e. embryos fathered by dark coloured males had a high tolerance to infection. Mating with large and dominant males would, however, not improve embryo viability when compared to random mating. We used simulations to provide estimates of how mate choice based on MHC or melanin-based skin patterns would influence embryos' tolerance to the experimentally induced pathogen stress.
Resumo:
Populations of the marble trout (Salmo marmoratus) have declined critically due to introgression by brown trout (Salmo trutta) strains. In order to define strategies for long-term conservation, we examined the genetic structure of the 8 known pure populations using 15 microsatellite loci. The analyses reveal extraordinarily strong genetic differentiation among populations separated by < 15 km, and extremely low levels of intrapopulation genetic variability. As natural recolonization seems highly unlikely, appropriate management and conservation strategies should comprise the reintroduction of pure populations from mixed stocks (translocation) to avoid further loss of genetic diversity.
Resumo:
Development and Phase 3 testing of the most advanced malaria vaccine, RTS,S/AS01, indicates that malaria vaccine R&D is moving into a new phase. Field trials of several research malaria vaccines have also confirmed that it is possible to impact the host-parasite relationship through vaccine-induced immune responses to multiple antigenic targets using different platforms. Other approaches have been appropriately tested but turned out to be disappointing after clinical evaluation. As the malaria community considers the potential role of a first-generation malaria vaccine in malaria control efforts, it is an apposite time to carefully document terminated and ongoing malaria vaccine research projects so that lessons learned can be applied to increase the chances of success for second-generation malaria vaccines over the next 10 years. The most comprehensive resource of malaria vaccine projects is a spreadsheet compiled by WHO thanks to the input from funding agencies, sponsors and investigators worldwide. This spreadsheet, available from WHO's website, is known as "the rainbow table". By summarizing the published and some unpublished information available for each project on the rainbow table, the most comprehensive review of malaria vaccine projects to be published in the last several years is provided below.
Resumo:
Phenotypic plasticity can increase tolerance to heterogeneous environments but the elevations and slopes of reaction norms are often population specific. Disruption of locally adapted reaction norms through outcrossing can lower individual viability. Here, we sampled five genetically distinct populations of brown trout (Salmo trutta) from within a river network, crossed them in a full-factorial design, and challenged the embryos with the opportunistic pathogen Pseudomonas fluorescens. By virtue of our design, we were able to disentangle effects of genetic crossing distance from sire and dam effects on early life-history traits. While pathogen infection did not increase mortality, it was associated with delayed hatching of smaller larvae with reduced yolk sac reserves. We found no evidence of a relationship between genetic distance (W, FST) and the expression of early-life history traits. Moreover, hybrids did not differ in phenotypic means or reaction norms in comparison to offspring from within-population crosses. Heritable variation in early life-history traits was found to remain stable across the control and pathogen environments. Our findings show that outcrossing within a rather narrow geographical scale can have neutral effects on F1 hybrid viability at the embryonic stage, i.e. at a stage when environmental and genetic effects on phenotypes are usually large.
Resumo:
Salmonid populations of many rivers are rapidly declining. One possible explanation is that habitat fragmentation increases genetic drift and reduces the populations' potential to adapt to changing environmental conditions. We measured the genetic and eco-morphological diversity of brown trout (Salmo trutta) in a Swiss stream system, using multivariate statistics and Bayesian clustering. We found large genetic and phenotypic variation within only 40 km of stream length. Eighty-eight percent of all pairwise F(ST) comparisons and 50% of the population comparisons in body shape were significant. High success rates of population assignment tests confirmed the distinctiveness of populations in both genotype and phenotype. Spatial analysis revealed that divergence increased with waterway distance, the number of weirs, and stretches of poor habitat between sampling locations, but effects of isolation-by-distance and habitat fragmentation could not be fully disentangled. Stocking intensity varied between streams but did not appear to erode genetic diversity within populations. A lack of association between phenotypic and genetic divergence points to a role of local adaptation or phenotypically plastic responses to habitat heterogeneity. Indeed, body shape could be largely explained by topographic stream slope, and variation in overall phenotype matched the flow regimes of the respective habitats.
Resumo:
Hatching is an important niche shift, and embryos in a wide range of taxa can either accelerate or delay this life-history switch in order to avoid stage-specific risks. Such behavior can occur in response to stress itself and to chemical cues that allow anticipation of stress. We studied the genetic organization of this phenotypic plasticity and tested whether there are differences among populations and across environments in order to learn more about the evolutionary potential of stress-induced hatching. As a study species, we chose the brown trout (Salmo trutta; Salmonidae). Gametes were collected from five natural populations (within one river network) and used for full-factorial in vitro fertilizations. The resulting embryos were either directly infected with Pseudomonas fluorescens or were exposed to waterborne cues from P. fluorescens-infected conspecifics. We found that direct inoculation with P. fluorescens increased embryonic mortality and induced hatching in all host populations. Exposure to waterborne cues revealed population-specific responses. We found significant additive genetic variation for hatching time, and genetic variation in trait plasticity. In conclusion, hatching is induced in response to infection and can be affected by waterborne cues of infection, but populations and families differ in their reaction to the latter.
Resumo:
ABSTRACT: BACKGROUND: Local adaptation can drive the divergence of populations but identification of the traits under selection remains a major challenge in evolutionary biology. Reciprocal transplant experiments are ideal tests of local adaptation, yet rarely used for higher vertebrates because of the mobility and potential invasiveness of non-native organisms. Here, we reciprocally transplanted 2500 brown trout (Salmo trutta) embryos from five populations to investigate local adaptation in early life history traits. Embryos were bred in a full-factorial design and raised in natural riverbeds until emergence. Customized egg capsules were used to simulate the natural redd environment and allowed tracking the fate of every individual until retrieval. We predicted that 1) within sites, native populations would outperform non-natives, and 2) across sites, populations would show higher performance at 'home' compared to 'away' sites. RESULTS: There was no evidence for local adaptation but we found large differences in survival and hatching rates between sites, indicative of considerable variation in habitat quality. Survival was generally high across all populations (55% +/- 3%), but ranged from 4% to 89% between sites. Average hatching rate was 25% +/- 3% across populations ranging from 0% to 62% between sites. CONCLUSION: This study provides rare empirical data on variation in early life history traits in a population network of a salmonid, and large-scale breeding and transplantation experiments like ours provide powerful tests for local adaptation. Despite the recently reported genetic and morphological differences between the populations in our study area, local adaptation at the embryo level is small, non-existent, or confined to ecological conditions that our experiment could not capture.
Resumo:
On the basis of the experiments carried out over various years, it was concluded that (1) grayling Thymallus thymallus and brown trout Salmo trutta are resistant to temperature-induced sex reversal at ecologically relevant temperatures, (2) environmental sex reversal is unlikely to cause the persistent sex ratio distortion observed in at least one of the study populations and (3) sex-specific tolerance of temperature-related stress may be the cause of distorted sex ratios in populations of T. thymallus or S. trutta.
Resumo:
'Good-genes' models of sexual selection predict significant additive genetic variation for fitness-correlated traits within populations to be revealed by phenotypic traits. To test this prediction, we sampled brown trout (Salmo trutta) from their natural spawning place, analysed their carotenoid-based red and melanin-based dark skin colours and tested whether these colours can be used to predict offspring viability. We produced half-sib families by in vitro fertilization, reared the resulting embryos under standardized conditions, released the hatchlings into a streamlet and identified the surviving juveniles 20 months later with microsatellite markers. Embryo viability was revealed by the sires' dark pigmentation: darker males sired more viable offspring. However, the sires' red coloration correlated negatively with embryo survival. Our study demonstrates that genetic variation for fitness-correlated traits is revealed by male colour traits in our study population, but contrary to predictions from other studies, intense red colours do not signal good genes.
Resumo:
Predicting progeny performance from parental genetic divergence can potentially enhance the efficiency of supportive breeding programmes and facilitate risk assessment. Yet, experimental testing of the effects of breeding distance on offspring performance remains rare, especially in wild populations of vertebrates. Recent studies have demonstrated that embryos of salmonid fish are sensitive indicators of additive genetic variance for viability traits. We therefore used gametes of wild brown trout (Salmo trutta) from five genetically distinct populations of a river catchment in Switzerland, and used a full factorial design to produce over 2,000 embryos in 100 different crosses with varying genetic distances (FST range 0.005-0.035). Customized egg capsules allowed recording the survival of individual embryos until hatching under natural field conditions. Our breeding design enabled us to evaluate the role of the environment, of genetic and nongenetic parental contributions, and of interactions between these factors, on embryo viability. We found that embryo survival was strongly affected by maternal environmental (i.e. non-genetic) effects and by the microenvironment, i.e. by the location within the gravel. However, embryo survival was not predicted by population divergence, parental allelic dissimilarity, or heterozygosity, neither in the field nor under laboratory conditions. Our findings suggest that the genetic effects of inter-population hybridization within a genetically differentiated meta-population can be minor in comparison to environmental effects.
Resumo:
Mountain regions worldwide are particularly sensitive to on-going climate change. Specifically in the Alps in Switzerland, the temperature has increased twice as fast than in the rest of the Northern hemisphere. Water temperature closely follows the annual air temperature cycle, severely impacting streams and freshwater ecosystems. In the last 20 years, brown trout (Salmo trutta L) catch has declined by approximately 40-50% in many rivers in Switzerland. Increasing water temperature has been suggested as one of the most likely cause of this decline. Temperature has a direct effect on trout population dynamics through developmental and disease control but can also indirectly impact dynamics via food-web interactions such as resource availability. We developed a spatially explicit modelling framework that allows spatial and temporal projections of trout biomass using the Aare river catchment as a model system, in order to assess the spatial and seasonal patterns of trout biomass variation. Given that biomass has a seasonal variation depending on trout life history stage, we developed seasonal biomass variation models for three periods of the year (Autumn-Winter, Spring and Summer). Because stream water temperature is a critical parameter for brown trout development, we first calibrated a model to predict water temperature as a function of air temperature to be able to further apply climate change scenarios. We then built a model of trout biomass variation by linking water temperature to trout biomass measurements collected by electro-fishing in 21 stations from 2009 to 2011. The different modelling components of our framework had overall a good predictive ability and we could show a seasonal effect of water temperature affecting trout biomass variation. Our statistical framework uses a minimum set of input variables that make it easily transferable to other study areas or fish species but could be improved by including effects of the biotic environment and the evolution of demographical parameters over time. However, our framework still remains informative to spatially highlight where potential changes of water temperature could affect trout biomass. (C) 2015 Elsevier B.V. All rights reserved.-