5 resultados para rail freight transportation

em Université de Lausanne, Switzerland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sackung is a widespread post-glacial morphological feature affecting Alpine mountains and creating characteristic geomorphological expression that can be detected from topography. Over long time evolution, internal deformation can lead to the formation of rapidly moving phenomena such as a rock-slide or rock avalanche. In this study, a detailed description of the Sierre rock-avalanche (SW Switzerland) is presented. This convex-shaped postglacial instability is one of the larger rock-avalanche in the Alps, involving more than 1.5 billion m3 with a run-out distance of about 14 km and extremely low Fahrböschung angle. This study presents comprehensive analyses of the structural and geological characteristics leading to the development of the Sierre rock-avalanche. In particular, by combining field observations, digital elevation model analyses and numerical modelling, the strong influence of both ductile and brittle tectonic structures on the failure mechanism and on the failure surface geometry is highlighted. The detection of pre-failure deformation indicates that the development of the rock avalanche corresponds to the last evolutionary stage of a pre-existing deep seated gravitational slope instability. These analyses accompanied by the dating and the characterization of rock avalanche deposits, allow the proposal of a destabilization model that clarifies the different phases leading to the development of the Sierre rock avalanche.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background, aim, and scope A coupled Life Cycle Costing and life cycle assessment has been performed for car-bodies of the Korean Tilting Train eXpress (TTX) project using European and Korean databases, with the objective of assessing environmental and cost performance to aid materials and process selection. More specifically, the potential of polymer composite car-body structures for the Korean Tilting Train eXpress (TTX) has been investigated. Materials and methods This assessment includes the cost of both carriage manufacturing and use phases, coupled with the life cycle environmental impacts of all stages from raw material production, through carriage manufacture and use, to end-of-life scenarios. Metallic carriages were compared with two composite options: hybrid steel-composite and full-composite carriages. The total planned production for this regional Korean train was 440 cars, with an annual production volume of 80 cars. Results and discussion The coupled analyses were used to generate plots of cost versus energy consumption and environmental impacts. The results show that the raw material and manufacturing phase costs are approximately half of the total life cycle costs, whilst their environmental impact is relatively insignificant (3-8%). The use phase of the car-body has the largest environmental impact for all scenarios, with near negligible contributions from the other phases. Since steel rail carriages weigh more (27-51%), the use phase cost is correspondingly higher, resulting in both the greatest environmental impact and the highest life cycle cost. Compared to the steel scenario, the hybrid composite variant has a lower life cycle cost (16%) and a lower environmental impact (26%). Though the full composite rail carriage may have the highest manufacturing cost, it results in the lowest total life cycle costs and lowest environmental impacts. Conclusions and recommendations This coupled cost and life cycle assessment showed that the full composite variant was the optimum solution. This case study showed that coupling of technical cost models with life cycle assessment offers an efficient route to accurately evaluate economic and environmental performance in a consistent way.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

GOJANOVIC, B., J. WELKER, K. IGLESIAS, C. DAUCOURT, and G. GREMION. Electric Bicycles as a New Active Transportation Modality to Promote Health. Med. Sci. Sports Exerc., Vol. 43, No. 11, pp. 2204-2210, 2011. Electrically assisted bicycles (EAB) are an emerging transportation modality favored for environmental reasons. Some physical effort is required to activate the supporting engine, making it a potential active commuting option. Purpose: We hypothesized that using an EAB in a hilly city allows sedentary subjects to commute comfortably, while providing a sufficient effort for health-enhancing purposes. Methods: Sedentary subjects performed four different trips at a self-selected pace: walking 1.7 km uphill from the train station to the hospital (WALK), biking 5.1 km from the lower part of town to the hospital with a regular bike (BIKE), or EAB at two different power assistance settings (EAB(high), EAB(std)). HR, oxygen consumption, and need to shower were recorded. Results: Eighteen sedentary subjects (12 female, 6 male) age 36 +/- 10 yr were included, with (V) over dotO(2max) of 39.4 +/- 5.4 mL.min(-1).kg(-1). Time to complete the course was 22 (WALK), 19 (EAB(high)), 21 (EAB(std)), and 30 (BIKE) min. Mean %(V) over dotO(2max) was 59.0%, 54.9%, 65.7%, and 72.8%. Mean%HR(max) was 71.5%, 74.5%, 80.3%, and 84.0%. There was no significant difference between WALK and EAB(high), but all other comparisons were different (P < 0.05). Two subjects needed to shower after EAB(high), 3 needed to shower after WALK, 8 needed to shower after EAB(std), and all 18 needed to shower after BIKE. WALK and EAB(high) elicited 6.5 and 6.1 METs (no difference), whereas it was 7.3 and 8.2 for EAB(std) and BIKE. Conclusions: EAB is a comfortable and ecological transportation modality, helping sedentary people commute to work and meet physical activity guidelines. Subjects appreciated ease of use and mild effort needed to activate the engine support climbing hills, without the need to shower at work. EAB can be promoted in a challenging urban environment to promote physical activity and mitigate pollution issues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The risks of a public exposure to a sudden decompression, until now, have been related to civil aviation and, at a lesser extent, to diving activities. However, engineers are currently planning the use of low pressure environments for underground transportation. This method has been proposed for the future Swissmetro, a high-speed underground train designed for inter-urban linking in Switzerland. HYPOTHESIS: The use of a low pressure environment in an underground public transportation system must be considered carefully regarding the decompression risks. Indeed, due to the enclosed environment, both decompression kinetics and safety measures may differ from aviation decompression cases. METHOD: A theoretical study of decompression risks has been conducted at an early stage of the Swissmetro project. A three-compartment theoretical model, based on the physics of fluids, has been implemented with flow processing software (Ithink 5.0). Simulations have been conducted in order to analyze "decompression scenarios" for a wide range of parameters, relevant in the context of the Swissmetro main study. RESULTS: Simulation results cover a wide range from slow to explosive decompression, depending on the simulation parameters. Not surprisingly, the leaking orifice area has a tremendous impact on barotraumatic effects, while the tunnel pressure may significantly affect both hypoxic and barotraumatic effects. Calculations have also shown that reducing the free space around the vehicle may mitigate significantly an accidental decompression. CONCLUSION: Numeric simulations are relevant to assess decompression risks in the future Swissmetro system. The decompression model has proven to be useful in assisting both design choices and safety management.