2 resultados para radar facies

em Université de Lausanne, Switzerland


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study uses digital elevation models and ground-penetrating radar to quantify the relation between the surface morphodynamics and subsurface sedimentology in the sandy braided South Saskatchewan River, Canada. A unique aspect of the methodology is that both digital elevation model and ground-penetrating radar data were collected from the same locations in 2004, 2005, 2006 and 2007, thus enabling the surface morphodynamics to be tied explicitly to the associated evolving depositional product. The occurrence of a large flood in 2005 also allowed the influence of discharge to be assessed with respect to the processproduct relationship. The data demonstrate that the morphology of the study reach evolved even during modest discharges, but more extensive erosion was caused by the large flood. In addition, the study reach was dominated by compound bars before the flood, but switched to being dominated by unit bars during and after the flood. The extent to which the subsurface deposits (the product') were modified by the surface morphodynamics (the process') was quantified using the changes in radar-facies recorded in sequential ground-penetrating radar surveys. These surveys reveal that during the large flood there was an increase in the proportion of facies associated with bar margin accretion and larger dunes. In subsequent years, these facies became truncated and replaced with facies associated with smaller dune sets. This analysis shows that unit bars generally become truncated more laterally than vertically and, thus, they lose the high-angle bar margin deposits and smaller scale bar-top deposits. In general, the only fragments that remain of the unit bars are dune sets, thus making identification of the original unit barform problematic. This novel data set has implications for what may ultimately become preserved in the rock record.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Ladinian Cassina beds belong to the fossiliferous levels of the world-famous Middle Triassic Monte San Giorgio Lagerstatte (UNESCO World Heritage List, Canton Ticino, Southern Alps). Although they are a rich archive for the depositional environment of an important thanatocoenosis, previous excavations focused on vertebrates and particularly on marine reptiles. In 2006, the Museo Cantonale di Storia Naturale (Lugano) started a new research project focusing for the first time on microfacies, micropalaeontological, palaeoecological and taphonomic analyses. So far, the upper third of the sequence has been excavated on a surface of around 40 m(2), and these new data complete those derived from new vertebrate finds (mainly fishes belonging to Saurichthys, Archaeosemionotus, Eosemionotus and Peltopleurus), allowing a better characterization of the basin. Background sedimentation on an anoxic to episodically suboxic seafloor resulted in a finely laminated succession of black shales and limestones, bearing a quasi-anaerobic biofacies, which is characterized by a monotypic benthic foraminiferal meiofauna and has been documented for the first time from the whole Monte San Giorgio sequence. Event deposition, testified by turbidites and volcaniclastic layers, is related to sediment input from basin margins and to distant volcanic eruptions, respectively. Fossil nekton points to an environment with only limited connection to the open sea. Terrestrial macroflora remains document the presence of emerged areas covered with vegetation and probably located relatively far away. Proliferation of benthic microbial mats is inferred on the basis of microfabrics, ecological considerations and taphonomic (both biostratinomic and diagenetic) features of the new vertebrate finds, whose excellent preservation is ascribed to sealing by biofilms. The occurrence of allochthonous elements allows an insight into the shallow-waters of the adjoining time-equivalent Salvatore platform. Finally, the available biostratigraphic data are critically reviewed.