19 resultados para raccomandazione e-learning privacy tecnica rule-based recommender suggerimento
em Université de Lausanne, Switzerland
Resumo:
Due to the advances in sensor networks and remote sensing technologies, the acquisition and storage rates of meteorological and climatological data increases every day and ask for novel and efficient processing algorithms. A fundamental problem of data analysis and modeling is the spatial prediction of meteorological variables in complex orography, which serves among others to extended climatological analyses, for the assimilation of data into numerical weather prediction models, for preparing inputs to hydrological models and for real time monitoring and short-term forecasting of weather.In this thesis, a new framework for spatial estimation is proposed by taking advantage of a class of algorithms emerging from the statistical learning theory. Nonparametric kernel-based methods for nonlinear data classification, regression and target detection, known as support vector machines (SVM), are adapted for mapping of meteorological variables in complex orography.With the advent of high resolution digital elevation models, the field of spatial prediction met new horizons. In fact, by exploiting image processing tools along with physical heuristics, an incredible number of terrain features which account for the topographic conditions at multiple spatial scales can be extracted. Such features are highly relevant for the mapping of meteorological variables because they control a considerable part of the spatial variability of meteorological fields in the complex Alpine orography. For instance, patterns of orographic rainfall, wind speed and cold air pools are known to be correlated with particular terrain forms, e.g. convex/concave surfaces and upwind sides of mountain slopes.Kernel-based methods are employed to learn the nonlinear statistical dependence which links the multidimensional space of geographical and topographic explanatory variables to the variable of interest, that is the wind speed as measured at the weather stations or the occurrence of orographic rainfall patterns as extracted from sequences of radar images. Compared to low dimensional models integrating only the geographical coordinates, the proposed framework opens a way to regionalize meteorological variables which are multidimensional in nature and rarely show spatial auto-correlation in the original space making the use of classical geostatistics tangled.The challenges which are explored during the thesis are manifolds. First, the complexity of models is optimized to impose appropriate smoothness properties and reduce the impact of noisy measurements. Secondly, a multiple kernel extension of SVM is considered to select the multiscale features which explain most of the spatial variability of wind speed. Then, SVM target detection methods are implemented to describe the orographic conditions which cause persistent and stationary rainfall patterns. Finally, the optimal splitting of the data is studied to estimate realistic performances and confidence intervals characterizing the uncertainty of predictions.The resulting maps of average wind speeds find applications within renewable resources assessment and opens a route to decrease the temporal scale of analysis to meet hydrological requirements. Furthermore, the maps depicting the susceptibility to orographic rainfall enhancement can be used to improve current radar-based quantitative precipitation estimation and forecasting systems and to generate stochastic ensembles of precipitation fields conditioned upon the orography.
Resumo:
Interactions between stimuli's acoustic features and experience-based internal models of the environment enable listeners to compensate for the disruptions in auditory streams that are regularly encountered in noisy environments. However, whether auditory gaps are filled in predictively or restored a posteriori remains unclear. The current lack of positive statistical evidence that internal models can actually shape brain activity as would real sounds precludes accepting predictive accounts of filling-in phenomenon. We investigated the neurophysiological effects of internal models by testing whether single-trial electrophysiological responses to omitted sounds in a rule-based sequence of tones with varying pitch could be decoded from the responses to real sounds and by analyzing the ERPs to the omissions with data-driven electrical neuroimaging methods. The decoding of the brain responses to different expected, but omitted, tones in both passive and active listening conditions was above chance based on the responses to the real sound in active listening conditions. Topographic ERP analyses and electrical source estimations revealed that, in the absence of any stimulation, experience-based internal models elicit an electrophysiological activity different from noise and that the temporal dynamics of this activity depend on attention. We further found that the expected change in pitch direction of omitted tones modulated the activity of left posterior temporal areas 140-200 msec after the onset of omissions. Collectively, our results indicate that, even in the absence of any stimulation, internal models modulate brain activity as do real sounds, indicating that auditory filling in can be accounted for by predictive activity.
Resumo:
Background/Aims: Cognitive dysfunction after medical treatment is increasingly being recognized. Studies on this topic require repeated cognitive testing within a short time. However, with repeated testing, practice effects must be expected. We quantified practice effects in a demographically corrected summary score of a neuropsychological test battery repeatedly administered to healthy elderly volunteers. Methods: The Consortium to Establish a Registry for Alzheimer's Disease (CERAD) Neuropsychological Assessment Battery (for which a demographically corrected summary score was developed), phonemic fluency tests, and trail-making tests were administered in healthy volunteers aged 65 years or older on days 0, 7, and 90. This battery allows calculation of a demographically adjusted continuous summary score. Results: Significant practice effects were observed in the CERAD total score and in the word list (learning and recall) subtest. Based on these volunteer data, we developed a threshold for diagnosis of postoperative cognitive dysfunction (POCD) with the CERAD total score. Conclusion: Practice effects with repeated administration of neuropsychological tests must be accounted for in the interpretation of such tests. Ignoring practice effects may lead to an underestimation of POCD. The usefulness of the proposed demographically adjusted continuous score for cognitive function will have to be tested prospectively in patients.
Resumo:
BACKGROUND: The annotation of protein post-translational modifications (PTMs) is an important task of UniProtKB curators and, with continuing improvements in experimental methodology, an ever greater number of articles are being published on this topic. To help curators cope with this growing body of information we have developed a system which extracts information from the scientific literature for the most frequently annotated PTMs in UniProtKB. RESULTS: The procedure uses a pattern-matching and rule-based approach to extract sentences with information on the type and site of modification. A ranked list of protein candidates for the modification is also provided. For PTM extraction, precision varies from 57% to 94%, and recall from 75% to 95%, according to the type of modification. The procedure was used to track new publications on PTMs and to recover potential supporting evidence for phosphorylation sites annotated based on the results of large scale proteomics experiments. CONCLUSIONS: The information retrieval and extraction method we have developed in this study forms the basis of a simple tool for the manual curation of protein post-translational modifications in UniProtKB/Swiss-Prot. Our work demonstrates that even simple text-mining tools can be effectively adapted for database curation tasks, providing that a thorough understanding of the working process and requirements are first obtained. This system can be accessed at http://eagl.unige.ch/PTM/.
Resumo:
Aim: Modelling species at the assemblage level is required to make effective forecast of global change impacts on diversity and ecosystem functioning. Community predictions may be achieved using macroecological properties of communities (MEM), or by stacking of individual species distribution models (S-SDMs). To obtain more realistic predictions of species assemblages, the SESAM framework suggests applying successive filters to the initial species source pool, by combining different modelling approaches and rules. Here we provide a first test of this framework in mountain grassland communities. Location: The western Swiss Alps. Methods: Two implementations of the SESAM framework were tested: a "Probability ranking" rule based on species richness predictions and rough probabilities from SDMs, and a "Trait range" rule that uses the predicted upper and lower bound of community-level distribution of three different functional traits (vegetative height, specific leaf area and seed mass) to constraint a pool of environmentally filtered species from binary SDMs predictions. Results: We showed that all independent constraints expectedly contributed to reduce species richness overprediction. Only the "Probability ranking" rule allowed slightly but significantly improving predictions of community composition. Main conclusion: We tested various ways to implement the SESAM framework by integrating macroecological constraints into S-SDM predictions, and report one that is able to improve compositional predictions. We discuss possible improvements, such as further improving the causality and precision of environmental predictors, using other assembly rules and testing other types of ecological or functional constraints.
Resumo:
Children with Wiskott-Aldrich syndrome (WAS) are often first diagnosed with immune thrombocytopenia (ITP), potentially leading to both inappropriate treatment and the delay of life-saving definitive therapy. WAS is traditionally differentiated from ITP based on the small size of WAS platelets. In practice, microthrombocytopenia is often not present or not appreciated in children with WAS. To develop an alternative method of differentiating WAS from ITP, we retrospectively reviewed all complete blood counts and measurements of immature platelet fraction (IPF) in 18 subjects with WAS and 38 subjects with a diagnosis of ITP treated at our hospital. Examination of peripheral blood smears revealed a wide range of platelet sizes in subjects with WAS. Mean platelet volume (MPV) was not reported in 26% of subjects, and subjects in whom MPV was not reported had lower platelet counts than did subjects in whom MPV was reported. Subjects with WAS had a lower IPF than would be expected for their level of thrombocytopenia, and the IPF in subjects with WAS was significantly lower than in subjects with a diagnosis of ITP. Using logistic regression, we developed and validated a rule based on platelet count and IPF that was more sensitive for the diagnosis of WAS than was the MPV, and was applicable regardless of the level of platelets or the availability of the MPV. Our observations demonstrate that MPV is often not available in severely thrombocytopenic subjects, which may hinder the diagnosis of WAS. In addition, subjects with WAS have a low IPF, which is consistent with the notion that a platelet production defect contributes to the thrombocytopenia of WAS. Knowledge of this detail of WAS pathophysiology allows to differentiate WAS from ITP with increased sensitivity, thereby allowing a physician to spare children with WAS from inappropriate treatment, and make definitive therapy available in a timely manner.
Resumo:
Résumé: L'impact de la maladie d'Alzheimer (MA) est dévastateur pour la vie quotidienne de la personne affectée, avec perte progressive de la mémoire et d'autres facultés cognitives jusqu'à la démence. Il n'existe toujours pas de traitement contre cette maladie et il y a aussi une grande incertitude sur le diagnostic des premiers stades de la MA. La signature anatomique de la MA, en particulier l'atrophie du lobe temporal moyen (LTM) mesurée avec la neuroimagerie, peut être utilisée comme un biomarqueur précoce, in vivo, des premiers stades de la MA. Toutefois, malgré le rôle évident du LMT dans les processus de la mémoire, nous savons que les modèles anatomiques prédictifs de la MA basés seulement sur des mesures d'atrophie du LTM n'expliquent pas tous les cas cliniques. Au cours de ma thèse, j'ai conduit trois projets pour comprendre l'anatomie et le fonctionnement du LMT dans (1) les processus de la maladie et dans (2) les processus de mémoire ainsi que (3) ceux de l'apprentissage. Je me suis intéressée à une population avec déficit cognitif léger (« Mild Cognitive Impairment », MCI), à risque pour la MA. Le but du premier projet était de tester l'hypothèse que des facteurs, autres que ceux cognitifs, tels que les traits de personnalité peuvent expliquer les différences interindividuelles dans le LTM. De plus, la diversité phénotypique des manifestations précliniques de la MA provient aussi d'une connaissance limitée des processus de mémoire et d'apprentissage dans le cerveau sain. L'objectif du deuxième projet porte sur l'investigation des sous-régions du LTM, et plus particulièrement de leur contribution dans différentes composantes de la mémoire de reconnaissance chez le sujet sain. Pour étudier cela, j'ai utilisé une nouvelle méthode multivariée ainsi que l'IRM à haute résolution pour tester la contribution de ces sous-régions dans les processus de familiarité (« ou Know ») et de remémoration (ou « Recollection »). Finalement, l'objectif du troisième projet était de tester la contribution du LTM en tant que système de mémoire dans l'apprentissage et l'interaction dynamique entre différents systèmes de mémoire durant l'apprentissage. Les résultats du premier projet montrent que, en plus du déficit cognitif observé dans une population avec MCI, les traits de personnalité peuvent expliquer les différences interindividuelles du LTM ; notamment avec une plus grande contribution du neuroticisme liée à une vulnérabilité au stress et à la dépression. Mon étude a permis d'identifier un pattern d'anormalité anatomique dans le LTM associé à la personnalité avec des mesures de volume et de diffusion moyenne du tissu. Ce pattern est caractérisé par une asymétrie droite-gauche du LTM et un gradient antéro-postérieur dans le LTM. J'ai interprété ce résultat par des propriétés tissulaires et neurochimiques différemment sensibles au stress. Les résultats de mon deuxième projet ont contribué au débat actuel sur la contribution des sous-régions du LTM dans les processus de familiarité et de remémoration. Utilisant une nouvelle méthode multivariée, les résultats supportent premièrement une dissociation des sous-régions associées aux différentes composantes de la mémoire. L'hippocampe est le plus associé à la mémoire de type remémoration et le cortex parahippocampique, à la mémoire de type familiarité. Deuxièmement, l'activation correspondant à la trace mnésique pour chaque type de mémoire est caractérisée par une distribution spatiale distincte. La représentation neuronale spécifique, « sparse-distributed», associée à la mémoire de remémoration dans l'hippocampe serait la meilleure manière d'encoder rapidement des souvenirs détaillés sans interférer les souvenirs précédemment stockés. Dans mon troisième projet, j'ai mis en place une tâche d'apprentissage en IRM fonctionnelle pour étudier les processus d'apprentissage d'associations probabilistes basé sur le feedback/récompense. Cette étude m'a permis de mettre en évidence le rôle du LTM dans l'apprentissage et l'interaction entre différents systèmes de mémoire comme la mémoire procédurale, perceptuelle ou d'amorçage et la mémoire de travail. Nous avons trouvé des activations dans le LTM correspondant à un processus de mémoire épisodique; les ganglions de la base (GB), à la mémoire procédurale et la récompense; le cortex occipito-temporal (OT), à la mémoire de représentation perceptive ou l'amorçage et le cortex préfrontal, à la mémoire de travail. Nous avons également observé que ces régions peuvent interagir; le type de relation entre le LTM et les GB a été interprété comme une compétition, ce qui a déjà été reporté dans des études récentes. De plus, avec un modèle dynamique causal, j'ai démontré l'existence d'une connectivité effective entre des régions. Elle se caractérise par une influence causale de type « top-down » venant de régions corticales associées avec des processus de plus haut niveau venant du cortex préfrontal sur des régions corticales plus primaires comme le OT cortex. Cette influence diminue au cours du de l'apprentissage; cela pourrait correspondre à un mécanisme de diminution de l'erreur de prédiction. Mon interprétation est que cela est à l'origine de la connaissance sémantique. J'ai également montré que les choix du sujet et l'activation cérébrale associée sont influencés par les traits de personnalité et des états affectifs négatifs. Les résultats de cette thèse m'ont amenée à proposer (1) un modèle expliquant les mécanismes possibles liés à l'influence de la personnalité sur le LTM dans une population avec MCI, (2) une dissociation des sous-régions du LTM dans différents types de mémoire et une représentation neuronale spécifique à ces régions. Cela pourrait être une piste pour résoudre les débats actuels sur la mémoire de reconnaissance. Finalement, (3) le LTM est aussi un système de mémoire impliqué dans l'apprentissage et qui peut interagir avec les GB par une compétition. Nous avons aussi mis en évidence une interaction dynamique de type « top -down » et « bottom-up » entre le cortex préfrontal et le cortex OT. En conclusion, les résultats peuvent donner des indices afin de mieux comprendre certains dysfonctionnements de la mémoire liés à l'âge et la maladie d'Alzheimer ainsi qu'à améliorer le développement de traitement. Abstract: The impact of Alzheimer's disease is devastating for the daily life of the affected patients, with progressive loss of memory and other cognitive skills until dementia. We still lack disease modifying treatment and there is also a great amount of uncertainty regarding the accuracy of diagnostic classification in the early stages of AD. The anatomical signature of AD, in particular the medial temporal lobe (MTL) atrophy measured with neuroimaging, can be used as an early in vivo biomarker in early stages of AD. However, despite the evident role of MTL in memory, we know that the derived predictive anatomical model based only on measures of brain atrophy in MTL does not explain all clinical cases. Throughout my thesis, I have conducted three projects to understand the anatomy and the functioning of MTL on (1) disease's progression, (2) memory process and (3) learning process. I was interested in a population with mild cognitive impairment (MCI), at risk for AD. The objective of the first project was to test the hypothesis that factors, other than the cognitive ones, such as the personality traits, can explain inter-individual differences in the MTL. Moreover, the phenotypic diversity in the manifestations of preclinical AD arises also from the limited knowledge of memory and learning processes in healthy brain. The objective of the second project concerns the investigation of sub-regions of the MTL, and more particularly their contributions in the different components of recognition memory in healthy subjects. To study that, I have used a new multivariate method as well as MRI at high resolution to test the contribution of those sub-regions in the processes of familiarity and recollection. Finally, the objective of the third project was to test the contribution of the MTL as a memory system in learning and the dynamic interaction between memory systems during learning. The results of the first project show that, beyond cognitive state of impairment observed in the population with MCI, the personality traits can explain the inter-individual differences in the MTL; notably with a higher contribution of neuroticism linked to proneness to stress and depression. My study has allowed identifying a pattern of anatomical abnormality in the MTL related to personality with measures of volume and mean diffusion of the tissue. That pattern is characterized by right-left asymmetry in MTL and an anterior to posterior gradient within MTL. I have interpreted that result by tissue and neurochemical properties differently sensitive to stress. Results of my second project have contributed to the actual debate on the contribution of MTL sub-regions in the processes of familiarity and recollection. Using a new multivariate method, the results support firstly a dissociation of the subregions associated with different memory components. The hippocampus was mostly associated with recollection and the surrounding parahippocampal cortex, with familiarity type of memory. Secondly, the activation corresponding to the mensic trace for each type of memory is characterized by a distinct spatial distribution. The specific neuronal representation, "sparse-distributed", associated with recollection in the hippocampus would be the best way to rapidly encode detailed memories without overwriting previously stored memories. In the third project, I have created a learning task with functional MRI to sudy the processes of learning of probabilistic associations based on feedback/reward. That study allowed me to highlight the role of the MTL in learning and the interaction between different memory systems such as the procedural memory, the perceptual memory or priming and the working memory. We have found activations in the MTL corresponding to a process of episodic memory; the basal ganglia (BG), to a procedural memory and reward; the occipito-temporal (OT) cortex, to a perceptive memory or priming and the prefrontal cortex, to working memory. We have also observed that those regions can interact; the relation type between the MTL and the BG has been interpreted as a competition. In addition, with a dynamic causal model, I have demonstrated a "top-down" influence from cortical regions associated with high level cortical area such as the prefrontal cortex on lower level cortical regions such as the OT cortex. That influence decreases during learning; that could correspond to a mechanism linked to a diminution of prediction error. My interpretation is that this is at the origin of the semantic knowledge. I have also shown that the subject's choice and the associated brain activation are influenced by personality traits and negative affects. Overall results of this thesis have brought me to propose (1) a model explaining the possible mechanism linked to the influence of personality on the MTL in a population with MCI, (2) a dissociation of MTL sub-regions in different memory types and a neuronal representation specific to each region. This could be a cue to resolve the actual debates on recognition memory. Finally, (3) the MTL is also a system involved in learning and that can interact with the BG by a competition. We have also shown a dynamic interaction of « top -down » and « bottom-up » types between the pre-frontal cortex and the OT cortex. In conclusion, the results could give cues to better understand some memory dysfunctions in aging and Alzheimer's disease and to improve development of treatment.
Resumo:
PURPOSE: We conducted a comprehensive review of the design, implementation, and outcome of first-in-human (FIH) trials of monoclonal antibodies (mAbs) to clearly determine early clinical development strategies for this class of compounds. METHODS: We performed a PubMed search using appropriate terms to identify reports of FIH trials of mAbs published in peer-reviewed journals between January 2000 and April 2013. RESULTS: A total of 82 publications describing FIH trials were selected for analysis. Only 27 articles (33%) reported the criteria used for selecting the starting dose (SD). Dose escalation was performed using rule-based methods in 66 trials (80%). The median number of planned dose levels was five (range, two to 13). The median of the ratio between the highest planned dose and the SD was 27 (range, two to 3,333). Although in 56 studies (68%) at least one grade 3 or 4 toxicity event was reported, no dose-limiting toxicity was observed in 47 trials (57%). The highest planned dose was reached in all trials, but the maximum-tolerated dose (MTD) was defined in only 13 studies (16%). The median of the ratio between MTD and SD was eight (range, four to 1,000). The recommended phase II dose was indicated in 34 studies (41%), but in 25 (73%) of these trials, this dose was chosen without considering toxicity as the main selection criterion. CONCLUSION: This literature review highlights the broad design heterogeneity of FIH trials testing mAbs. Because of the limited observed toxicity, the MTD was infrequently reached, and therefore, the recommended phase II dose for subsequent clinical trials was only tentatively defined.
Resumo:
The capacity to learn to associate sensory perceptions with appropriate motor actions underlies the success of many animal species, from insects to humans. The evolutionary significance of learning has long been a subject of interest for evolutionary biologists who emphasize the bene¬fit yielded by learning under changing environmental conditions, where it is required to flexibly switch from one behavior to another. However, two unsolved questions are particularly impor¬tant for improving our knowledge of the evolutionary advantages provided by learning, and are addressed in the present work. First, because it is possible to learn the wrong behavior when a task is too complex, the learning rules and their underlying psychological characteristics that generate truly adaptive behavior must be identified with greater precision, and must be linked to the specific ecological problems faced by each species. A framework for predicting behavior from the definition of a learning rule is developed here. Learning rules capture cognitive features such as the tendency to explore, or the ability to infer rewards associated to unchosen actions. It is shown that these features interact in a non-intuitive way to generate adaptive behavior in social interactions where individuals affect each other's fitness. Such behavioral predictions are used in an evolutionary model to demonstrate that, surprisingly, simple trial-and-error learn¬ing is not always outcompeted by more computationally demanding inference-based learning, when population members interact in pairwise social interactions. A second question in the evolution of learning is its link with and relative advantage compared to other simpler forms of phenotypic plasticity. After providing a conceptual clarification on the distinction between genetically determined vs. learned responses to environmental stimuli, a new factor in the evo¬lution of learning is proposed: environmental complexity. A simple mathematical model shows that a measure of environmental complexity, the number of possible stimuli in one's environ¬ment, is critical for the evolution of learning. In conclusion, this work opens roads for modeling interactions between evolving species and their environment in order to predict how natural se¬lection shapes animals' cognitive abilities. - La capacité d'apprendre à associer des sensations perceptives à des actions motrices appropriées est sous-jacente au succès évolutif de nombreuses espèces, depuis les insectes jusqu'aux êtres hu¬mains. L'importance évolutive de l'apprentissage est depuis longtemps un sujet d'intérêt pour les biologistes de l'évolution, et ces derniers mettent l'accent sur le bénéfice de l'apprentissage lorsque les conditions environnementales sont changeantes, car dans ce cas il est nécessaire de passer de manière flexible d'un comportement à l'autre. Cependant, deux questions non résolues sont importantes afin d'améliorer notre savoir quant aux avantages évolutifs procurés par l'apprentissage. Premièrement, puisqu'il est possible d'apprendre un comportement incorrect quand une tâche est trop complexe, les règles d'apprentissage qui permettent d'atteindre un com¬portement réellement adaptatif doivent être identifiées avec une plus grande précision, et doivent être mises en relation avec les problèmes écologiques spécifiques rencontrés par chaque espèce. Un cadre théorique ayant pour but de prédire le comportement à partir de la définition d'une règle d'apprentissage est développé ici. Il est démontré que les caractéristiques cognitives, telles que la tendance à explorer ou la capacité d'inférer les récompenses liées à des actions non ex¬périmentées, interagissent de manière non-intuitive dans les interactions sociales pour produire des comportements adaptatifs. Ces prédictions comportementales sont utilisées dans un modèle évolutif afin de démontrer que, de manière surprenante, l'apprentissage simple par essai-et-erreur n'est pas toujours battu par l'apprentissage basé sur l'inférence qui est pourtant plus exigeant en puissance de calcul, lorsque les membres d'une population interagissent socialement par pair. Une deuxième question quant à l'évolution de l'apprentissage concerne son lien et son avantage relatif vis-à -vis d'autres formes plus simples de plasticité phénotypique. Après avoir clarifié la distinction entre réponses aux stimuli génétiquement déterminées ou apprises, un nouveau fac¬teur favorisant l'évolution de l'apprentissage est proposé : la complexité environnementale. Un modèle mathématique permet de montrer qu'une mesure de la complexité environnementale - le nombre de stimuli rencontrés dans l'environnement - a un rôle fondamental pour l'évolution de l'apprentissage. En conclusion, ce travail ouvre de nombreuses perspectives quant à la mo¬délisation des interactions entre les espèces en évolution et leur environnement, dans le but de comprendre comment la sélection naturelle façonne les capacités cognitives des animaux.
Resumo:
Multisensory experiences influence subsequent memory performance and brain responses. Studies have thus far concentrated on semantically congruent pairings, leaving unresolved the influence of stimulus pairing and memory sub-types. Here, we paired images with unique, meaningless sounds during a continuous recognition task to determine if purely episodic, single-trial multisensory experiences can incidentally impact subsequent visual object discrimination. Psychophysics and electrical neuroimaging analyses of visual evoked potentials (VEPs) compared responses to repeated images either paired or not with a meaningless sound during initial encounters. Recognition accuracy was significantly impaired for images initially presented as multisensory pairs and could not be explained in terms of differential attention or transfer of effects from encoding to retrieval. VEP modulations occurred at 100-130ms and 270-310ms and stemmed from topographic differences indicative of network configuration changes within the brain. Distributed source estimations localized the earlier effect to regions of the right posterior temporal gyrus (STG) and the later effect to regions of the middle temporal gyrus (MTG). Responses in these regions were stronger for images previously encountered as multisensory pairs. Only the later effect correlated with performance such that greater MTG activity in response to repeated visual stimuli was linked with greater performance decrements. The present findings suggest that brain networks involved in this discrimination may critically depend on whether multisensory events facilitate or impair later visual memory performance. More generally, the data support models whereby effects of multisensory interactions persist to incidentally affect subsequent behavior as well as visual processing during its initial stages.
Resumo:
The Learning Affect Monitor (LAM) is a new computer-based assessment system integrating basic dimensional evaluation and discrete description of affective states in daily life, based on an autonomous adapting system. Subjects evaluate their affective states according to a tridimensional space (valence and activation circumplex as well as global intensity) and then qualify it using up to 30 adjective descriptors chosen from a list. The system gradually adapts to the user, enabling the affect descriptors it presents to be increasingly relevant. An initial study with 51 subjects, using a 1 week time-sampling with 8 to 10 randomized signals per day, produced n = 2,813 records with good reliability measures (e.g., response rate of 88.8%, mean split-half reliability of .86), user acceptance, and usability. Multilevel analyses show circadian and hebdomadal patterns, and significant individual and situational variance components of the basic dimension evaluations. Validity analyses indicate sound assignment of qualitative affect descriptors in the bidimensional semantic space according to the circumplex model of basic affect dimensions. The LAM assessment module can be implemented on different platforms (palm, desk, mobile phone) and provides very rapid and meaningful data collection, preserving complex and interindividually comparable information in the domain of emotion and well-being.
Resumo:
Both, Bayesian networks and probabilistic evaluation are gaining more and more widespread use within many professional branches, including forensic science. Notwithstanding, they constitute subtle topics with definitional details that require careful study. While many sophisticated developments of probabilistic approaches to evaluation of forensic findings may readily be found in published literature, there remains a gap with respect to writings that focus on foundational aspects and on how these may be acquired by interested scientists new to these topics. This paper takes this as a starting point to report on the learning about Bayesian networks for likelihood ratio based, probabilistic inference procedures in a class of master students in forensic science. The presentation uses an example that relies on a casework scenario drawn from published literature, involving a questioned signature. A complicating aspect of that case study - proposed to students in a teaching scenario - is due to the need of considering multiple competing propositions, which is an outset that may not readily be approached within a likelihood ratio based framework without drawing attention to some additional technical details. Using generic Bayesian networks fragments from existing literature on the topic, course participants were able to track the probabilistic underpinnings of the proposed scenario correctly both in terms of likelihood ratios and of posterior probabilities. In addition, further study of the example by students allowed them to derive an alternative Bayesian network structure with a computational output that is equivalent to existing probabilistic solutions. This practical experience underlines the potential of Bayesian networks to support and clarify foundational principles of probabilistic procedures for forensic evaluation.
Resumo:
The paper presents some contemporary approaches to spatial environmental data analysis. The main topics are concentrated on the decision-oriented problems of environmental spatial data mining and modeling: valorization and representativity of data with the help of exploratory data analysis, spatial predictions, probabilistic and risk mapping, development and application of conditional stochastic simulation models. The innovative part of the paper presents integrated/hybrid model-machine learning (ML) residuals sequential simulations-MLRSS. The models are based on multilayer perceptron and support vector regression ML algorithms used for modeling long-range spatial trends and sequential simulations of the residuals. NIL algorithms deliver non-linear solution for the spatial non-stationary problems, which are difficult for geostatistical approach. Geostatistical tools (variography) are used to characterize performance of ML algorithms, by analyzing quality and quantity of the spatially structured information extracted from data with ML algorithms. Sequential simulations provide efficient assessment of uncertainty and spatial variability. Case study from the Chernobyl fallouts illustrates the performance of the proposed model. It is shown that probability mapping, provided by the combination of ML data driven and geostatistical model based approaches, can be efficiently used in decision-making process. (C) 2003 Elsevier Ltd. All rights reserved.