36 resultados para quantum computing
em Université de Lausanne, Switzerland
Resumo:
Résumé La cryptographie classique est basée sur des concepts mathématiques dont la sécurité dépend de la complexité du calcul de l'inverse des fonctions. Ce type de chiffrement est à la merci de la puissance de calcul des ordinateurs ainsi que la découverte d'algorithme permettant le calcul des inverses de certaines fonctions mathématiques en un temps «raisonnable ». L'utilisation d'un procédé dont la sécurité est scientifiquement prouvée s'avère donc indispensable surtout les échanges critiques (systèmes bancaires, gouvernements,...). La cryptographie quantique répond à ce besoin. En effet, sa sécurité est basée sur des lois de la physique quantique lui assurant un fonctionnement inconditionnellement sécurisé. Toutefois, l'application et l'intégration de la cryptographie quantique sont un souci pour les développeurs de ce type de solution. Cette thèse justifie la nécessité de l'utilisation de la cryptographie quantique. Elle montre que le coût engendré par le déploiement de cette solution est justifié. Elle propose un mécanisme simple et réalisable d'intégration de la cryptographie quantique dans des protocoles de communication largement utilisés comme les protocoles PPP, IPSec et le protocole 802.1li. Des scénarios d'application illustrent la faisabilité de ces solutions. Une méthodologie d'évaluation, selon les critères communs, des solutions basées sur la cryptographie quantique est également proposée dans ce document. Abstract Classical cryptography is based on mathematical functions. The robustness of a cryptosystem essentially depends on the difficulty of computing the inverse of its one-way function. There is no mathematical proof that establishes whether it is impossible to find the inverse of a given one-way function. Therefore, it is mandatory to use a cryptosystem whose security is scientifically proven (especially for banking, governments, etc.). On the other hand, the security of quantum cryptography can be formally demonstrated. In fact, its security is based on the laws of physics that assure the unconditional security. How is it possible to use and integrate quantum cryptography into existing solutions? This thesis proposes a method to integrate quantum cryptography into existing communication protocols like PPP, IPSec and the 802.l1i protocol. It sketches out some possible scenarios in order to prove the feasibility and to estimate the cost of such scenarios. Directives and checkpoints are given to help in certifying quantum cryptography solutions according to Common Criteria.
Resumo:
Quantum indeterminism is frequently invoked as a solution to the problem of how a disembodied soul might interact with the brain (as Descartes proposed), and is sometimes invoked in theories of libertarian free will even when they do not involve dualistic assumptions. Taking as example the Eccles-Beck model of interaction between self (or soul) and brain at the level of synaptic exocytosis, I here evaluate the plausibility of these approaches. I conclude that Heisenbergian uncertainty is too small to affect synaptic function, and that amplification by chaos or by other means does not provide a solution to this problem. Furthermore, even if Heisenbergian effects did modify brain functioning, the changes would be swamped by those due to thermal noise. Cells and neural circuits have powerful noise-resistance mechanisms, that are adequate protection against thermal noise and must therefore be more than sufficient to buffer against Heisenbergian effects. Other forms of quantum indeterminism must be considered, because these can be much greater than Heisenbergian uncertainty, but these have not so far been shown to play a role in the brain.
Resumo:
The dissertation investigates some relevant metaphysical issues arising in the context of spacetime theories. In particular, the inquiry focuses on general relativity and canonical quantum gravity. A formal definition of spacetime theory is proposed and, against this framework, an analysis of the notions of general covariance, symmetry and background independence is performed. It is argued that many conceptual issues in general relativity and canonical quantum gravity derive from putting excessive emphasis on general covariance as an ontological prin-ciple. An original metaphysical position grounded in scientific essential- ism and causal realism (weak essentialism) is developed and defended. It is argued that, in the context of general relativity, weak essentialism supports spacetime substantivalism. It is also shown that weak essentialism escapes arguments from metaphysical underdetermination by positing a particular kind of causation, dubbed geometric. The proposed interpretive framework is then applied to Bohmian mechanics, pointing out that weak essentialism nicely fits into this theory. In the end, a possible Bohmian implementation of loop quantum gravity is considered, and such a Bohmian approach is interpreted in a geometric causal fashion. Under this interpretation, Bohmian loop quantum gravity straightforwardly commits us to an ontology of elementary extensions of space whose evolution is described by a non-local law. The causal mechanism underlying this evolution clarifies many conceptual issues related to the emergence of classical spacetime from the quantum regime. Although there is as yet no fully worked out physical theory of quantum gravity, it is argued that the proposed approach sets up a standard that proposals for a serious ontology in this field should meet.
Resumo:
A new and original reagent based on the use of highly fluorescent cadmium telluride (CdTe) quantum dots (QDs) in aqueous solution is proposed to detect weak fingermarks in blood on non-porous surfaces. To assess the efficiency of this approach, comparisons were performed with one of the most efficient blood reagents on non-porous surfaces, Acid Yellow 7 (AY7). To this end, four non-porous surfaces were studied, i.e. glass, transparent polypropylene, black polyethylene, and aluminium foil. To evaluate the sensitivity of both reagents, sets of depleted fingermarks were prepared, using the same finger, initially soaked with blood, which was then successively applied on the same surface without recharging it with blood or latent secretions. The successive marks were then cut in halves and the halves treated separately with each reagent. The results showed that QDs were equally efficient to AY7 on glass, polyethylene and polypropylene surfaces, and were superior to AY7 on aluminium. The use of QDs in new, sensitive and highly efficient latent and blood mark detection techniques appears highly promising. Health and safety issues related to the use of cadmium are also discussed. It is suggested that applying QDs in aqueous solution (and not as a dry dusting powder) considerably lowers the toxicity risks.
Resumo:
There is no doubt about the necessity of protecting digital communication: Citizens are entrusting their most confidential and sensitive data to digital processing and communication, and so do governments, corporations, and armed forces. Digital communication networks are also an integral component of many critical infrastructures we are seriously depending on in our daily lives. Transportation services, financial services, energy grids, food production and distribution networks are only a few examples of such infrastructures. Protecting digital communication means protecting confidentiality and integrity by encrypting and authenticating its contents. But most digital communication is not secure today. Nevertheless, some of the most ardent problems could be solved with a more stringent use of current cryptographic technologies. Quite surprisingly, a new cryptographic primitive emerges from the ap-plication of quantum mechanics to information and communication theory: Quantum Key Distribution. QKD is difficult to understand, it is complex, technically challenging, and costly-yet it enables two parties to share a secret key for use in any subsequent cryptographic task, with an unprecedented long-term security. It is disputed, whether technically and economically fea-sible applications can be found. Our vision is, that despite technical difficulty and inherent limitations, Quantum Key Distribution has a great potential and fits well with other cryptographic primitives, enabling the development of highly secure new applications and services. In this thesis we take a structured approach to analyze the practical applicability of QKD and display several use cases of different complexity, for which it can be a technology of choice, either because of its unique forward security features, or because of its practicability.
Resumo:
A lot of research in cognition and decision making suffers from a lack of formalism. The quantum probability program could help to improve this situation, but we wonder whether it would provide even more added value if its presumed focus on outcome models were complemented by process models that are, ideally, informed by ecological analyses and integrated into cognitive architectures.
Resumo:
This study looks at how increased memory utilisation affects throughput and energy consumption in scientific computing, especially in high-energy physics. Our aim is to minimise energy consumed by a set of jobs without increasing the processing time. The earlier tests indicated that, especially in data analysis, throughput can increase over 100% and energy consumption decrease 50% by processing multiple jobs in parallel per CPU core. Since jobs are heterogeneous, it is not possible to find an optimum value for the number of parallel jobs. A better solution is based on memory utilisation, but finding an optimum memory threshold is not straightforward. Therefore, a fuzzy logic-based algorithm was developed that can dynamically adapt the memory threshold based on the overall load. In this way, it is possible to keep memory consumption stable with different workloads while achieving significantly higher throughput and energy-efficiency than using a traditional fixed number of jobs or fixed memory threshold approaches.
Resumo:
Motivation: Genome-wide association studies have become widely used tools to study effects of genetic variants on complex diseases. While it is of great interest to extend existing analysis methods by considering interaction effects between pairs of loci, the large number of possible tests presents a significant computational challenge. The number of computations is further multiplied in the study of gene expression quantitative trait mapping, in which tests are performed for thousands of gene phenotypes simultaneously. Results: We present FastEpistasis, an efficient parallel solution extending the PLINK epistasis module, designed to test for epistasis effects when analyzing continuous phenotypes. Our results show that the algorithm scales with the number of processors and offers a reduction in computation time when several phenotypes are analyzed simultaneously. FastEpistasis is capable of testing the association of a continuous trait with all single nucleotide polymorphism ( SNP) pairs from 500 000 SNPs, totaling 125 billion tests, in a population of 5000 individuals in 29, 4 or 0.5 days using 8, 64 or 512 processors.
Resumo:
The M-Coffee server is a web server that makes it possible to compute multiple sequence alignments (MSAs) by running several MSA methods and combining their output into one single model. This allows the user to simultaneously run all his methods of choice without having to arbitrarily choose one of them. The MSA is delivered along with a local estimation of its consistency with the individual MSAs it was derived from. The computation of the consensus multiple alignment is carried out using a special mode of the T-Coffee package [Notredame, Higgins and Heringa (T-Coffee: a novel method for fast and accurate multiple sequence alignment. J. Mol. Biol. 2000; 302: 205-217); Wallace, O'Sullivan, Higgins and Notredame (M-Coffee: combining multiple sequence alignment methods with T-Coffee. Nucleic Acids Res. 2006; 34: 1692-1699)] Given a set of sequences (DNA or proteins) in FASTA format, M-Coffee delivers a multiple alignment in the most common formats. M-Coffee is a freeware open source package distributed under a GPL license and it is available either as a standalone package or as a web service from www.tcoffee.org.