159 resultados para quantitative competitive RT-PCR
em Université de Lausanne, Switzerland
Resumo:
Lymphocytic choriomeningitis virus (LCMV) is a rare cause of central nervous system disease in humans. Screening by real-time RT-PCR assay is of interest in the case of aseptic meningitis of unknown etiology. A specific LCMV real-time RT-PCR assay, based on the detection of genomic sequences of the viral nucleoprotein (NP), was developed to assess the presence of LCMV in cerebrospinal fluids (CSF) sent for viral screening to a Swiss university hospital laboratory. A 10-fold dilution series assay using a plasmid containing the cDNA of the viral NP of the LCMV isolate Armstrong (Arm) 53b demonstrated the high sensitivity of the assay with a lowest detection limit of ≤50 copies per reaction. High sensitivity was confirmed by dilution series assays in a pool of human CSF using four different LCMV isolates (Arm53b, WE54, Traub and E350) with observed detection limits of ≤10PFU/ml (Arm53b and WE54) and 1PFU/ml (Traub and E350). Analysis of 130 CSF showed no cases of acute infection. The absence of positive cases was confirmed by a published PCR assay detecting all Old World arenaviruses. This study validates a specific and sensitive real-time RT-PCR assay for the diagnosis of LCMV infections. Results showed that LCMV infections are extremely rare in hospitalized patients western in Switzerland.
Resumo:
As acute nonlymphocytic leukemia (ANLL) with inv(16) (p13q22) or t(16;16)(p13;q22) has been shown to result from the fusion of transcription factor subunit core binding factor (CBFB) to a myosin heavy chain (MYH11), we sought to design methods to detect this rearrangement using reverse transcriptase-polymerase chain reaction (RT-PCR). In all of 27 inv(16)(p13q22) and four t(16;16)(p13;q22) cases tested, a chimeric CBFB-MYH11 transcript coding for an in-frame fusion protein was detected. In a more extensive RT-PCR analysis with different primer pairs, we detected a second new chimeric CBFB-MYH11 transcript in 10 of 11 patients tested. The CBFB-MYH11 reading frame of the second transcript was maintained in one patient but not in the others. We show that the different CBFB-MYH11 transcripts in one patient arise from alternative splicing. Translation of the transcript in which the CBFB-MYH11 reading frame is not maintained leads to a slightly truncated CBFB protein.
Resumo:
RÉSUMÉ Le but d'un traitement antimicrobien est d'éradiquer une infection bactérienne. Cependant, il est souvent difficile d'en évaluer rapidement l'efficacité en utilisant les techniques standard. L'estimation de la viabilité bactérienne par marqueurs moléculaires permettrait d'accélérer le processus. Ce travail étudie donc la possibilité d'utiliser le RNA ribosomal (rRNA) à cet effet. Des cultures de Streptococcus gordonii sensibles (parent Wt) et tolérants (mutant Tol 1) à l'action bactéricide de la pénicilline ont été exposées à différents antibiotiques. La survie bactérienne au cours du temps a été déterminée en comparant deux méthodes. La méthode de référence par compte viable a été comparée à une méthode moléculaire consistant à amplifier par PCR quantitative en temps réel une partie du génome bactérien. La cible choisie devait refléter la viabilité cellulaire et par conséquent être synthétisée de manière constitutive lors de la vie de la bactérie et être détruite rapidement lors de la mort cellulaire. Le choix s'est porté sur un fragment du gène 16S-rRNA. Ce travail a permis de valider ce choix en corrélant ce marqueur moléculaire à la viabilité bactérienne au cours d'un traitement antibiotique bactéricide. De manière attendue, les S. gordonii sensibles à la pénicilline ont perdu ≥ 4 log10 CFU/ml après 48 heures de traitement par pénicilline alors que le mutant tolérant Tol1 en a perdu ≥ 1 log10 CFU/ml. De manière intéressant, la quantité de marqueur a augmenté proportionnellement au compte viable durant la phase de croissance bactérienne. Après administration du traitement antibiotique, l'évolution du marqueur dépendait de la capacité de la bactérie à survivre à l'action de l'antibiotique. Stable lors du traitement des souches tolérantes, la quantité de marqueur détectée diminuait de manière proportionnelle au compte viable lors du traitement des souches sensibles. Cette corrélation s'est confirmée lors de l'utilisation d'autres antibiotiques bactéricides. En conclusion, l'amplification par PCR du RNA ribosomal 16S permet d'évaluer rapidement la viabilité bactérienne au cours d'un traitement antibiotique en évitant le recours à la mise en culture dont les résultats ne sont obtenus qu'après plus de 24 heures. Cette méthode offre donc au clinicien une évaluation rapide de l'efficacité du traitement, particulièrement dans les situations, comme le choc septique, où l'initiation sans délai d'un traitement efficace est une des conditions essentielles du succès thérapeutique. ABSTRACT Assessing bacterial viability by molecular markers might help accelerate the measurement of antibiotic-induced killing. This study investigated whether ribosomal RNA (rRNA) could be suitable for this purpose. Cultures of penicillin-susceptible and penicillin-tolerant (Tol1 mutant) Streptococcus gordonii were exposed to mechanistically different penicillin and levofloxacin. Bacterial survival was assessed by viable counts, and compared to quantitative real-time PCR amplification of either the 16S-rRNA genes (rDNA) or the 16S rRNA, following reverse transcription. Penicillin-susceptible S. gordonii lost ≥ 4 log10 CFU/ml of viability over 48 h of penicillin treatment. In comparison, the Toll mutant lost ≤ 1 log10 CFU/ml. Amplification of a 427-base fragment of 16S rDNA yielded amplicons that increased proportionally to viable counts during bacterial growth, but did not decrease during drug-induced killing. In contrast, the same 427-base fragment amplified from 16S rDNA paralleled both bacterial growth and drug-induced killing. It also differentiated between penicillin-induced killing of the parent and the Toll mutant (≥4 log10 CFU/ml and ≤1 lo10 CFU/ml, respectively), and detected killing by mechanistically unrelated levofloxacin. Since large fragments of polynucleotides might be degraded faster than smaller fragments the experiments were repeated by amplifying a 119-base region internal to the origina1 427-base fragment. The amount of 119-base amplicons increased proportionally to viability during growth, but remained stable during drug treatment. Thus, 16S rRNA was a marker of antibiotic-induced killing, but the size of the amplified fragment was critical to differentiate between live and dead bacteria.
Resumo:
Assessing bacterial viability by molecular markers might help accelerate the measurement of antibiotic-induced killing. This study investigated whether rRNA could be suitable for this purpose. Cultures of penicillin-susceptible and penicillin-tolerant (Tol1 mutant) Streptococcus gordonii were exposed to mechanistically different penicillin and levofloxacin. Bacterial survival was assessed by viable counts and compared to quantitative real-time PCR amplification of either the 16S rRNA genes or the 16S rRNA, following reverse transcription. Penicillin-susceptible S. gordonii lost > or =4 log(10) CFU/ml of viability over 48 h of penicillin treatment. In comparison, the Tol1 mutant lost < or =1 log(10) CFU/ml. Amplification of a 427-bp fragment of 16S rRNA genes yielded amplicons that increased proportionally to viable counts during bacterial growth but did not decrease during drug-induced killing. In contrast, the same 427-bp fragment amplified from 16S rRNA paralleled both bacterial growth and drug-induced killing. It also differentiated between penicillin-induced killing of the parent and the Tol1 mutant (> or =4 log(10) CFU/ml and < or =1 log(10) CFU/ml, respectively) and detected killing by mechanistically unrelated levofloxacin. Since large fragments of polynucleotides might be degraded faster than smaller fragments, the experiments were repeated by amplifying a 119-bp region internal to the original 427-bp fragment. The amount of 119-bp amplicons increased proportionally to viability during growth but remained stable during drug treatment. Thus, 16S rRNA was a marker of antibiotic-induced killing, but the size of the amplified fragment was critical for differentiation between live and dead bacteria.
Resumo:
Within the ENCODE Consortium, GENCODE aimed to accurately annotate all protein-coding genes, pseudogenes, and noncoding transcribed loci in the human genome through manual curation and computational methods. Annotated transcript structures were assessed, and less well-supported loci were systematically, experimentally validated. Predicted exon-exon junctions were evaluated by RT-PCR amplification followed by highly multiplexed sequencing readout, a method we called RT-PCR-seq. Seventy-nine percent of all assessed junctions are confirmed by this evaluation procedure, demonstrating the high quality of the GENCODE gene set. RT-PCR-seq was also efficient to screen gene models predicted using the Human Body Map (HBM) RNA-seq data. We validated 73% of these predictions, thus confirming 1168 novel genes, mostly noncoding, which will further complement the GENCODE annotation. Our novel experimental validation pipeline is extremely sensitive, far more than unbiased transcriptome profiling through RNA sequencing, which is becoming the norm. For example, exon-exon junctions unique to GENCODE annotated transcripts are five times more likely to be corroborated with our targeted approach than with extensive large human transcriptome profiling. Data sets such as the HBM and ENCODE RNA-seq data fail sampling of low-expressed transcripts. Our RT-PCR-seq targeted approach also has the advantage of identifying novel exons of known genes, as we discovered unannotated exons in ~11% of assessed introns. We thus estimate that at least 18% of known loci have yet-unannotated exons. Our work demonstrates that the cataloging of all of the genic elements encoded in the human genome will necessitate a coordinated effort between unbiased and targeted approaches, like RNA-seq and RT-PCR-seq.
Resumo:
The function of interleukin-3 (or multi-CSF) in the hemopoietic system has been studied in great detail. Although its growth promoting activity on brain microglial cells has been confirmed both in vitro and in vivo, its presence in the brain and even in cultured brain cells has repeatedly been questioned. We have shown recently that isolated rat microglia express mRNA(IL-3) and synthesize IL-3 polypeptide. It is shown here by use of the PCR method, that mRNA(IL-3) is found also in C6 glioblastoma, in rat aggregate cultures, and in newborn and adult rat brain. Quantitation of amplified cDNA(IL-3) was achieved by non-competitive RT-PCR using an elongated internal standard. IL-3 messenger RNA was almost undetectable in vivo and low in (serum-free) aggregate cultures. In isolated microglia, mRNA(IL-3) was increased upon treatment with LPS, PHA, with the cytokines IL-1 or TNF-alpha, with retinoic acid, dbcAMP or the phorbol ester TPA. Effects of LPS were inhibited by dexamethasone, while the glucocorticoid by itself had no effect on basal IL-3 expression. LPS increased mRNA(IL-3) in a concentration-dependent manner beginning with 10 pg/ml and reaching plateau levels at 10 ng/ml. LPS also increased mRNAs of TNF-alpha and TNF-beta. TNF-alpha mRNA was already detectable in untreated microglia and LPS-increased levels were sustained for a few days. In contrast, TNF-beta mRNA was observed only between 4 and 16 h of LPS incubation. It was absent in LPS-free microglia, and after 24 h of LPS-treatment or later.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
PURPOSE: Retinal degeneration is associated with iron accumulation in several rodent models in which iron-regulating proteins are impaired. Oxidative stress is catalyzed by unbound iron. METHODS: The role of the heavy chain of ferritin, which sequesters iron, in regulating the thickness of the photoreceptor nuclear layer in the 4- and 16-month-old wild-type H ferritin (HFt(+/+)) and heterozygous H ferritin (HFt(+/-)) mice was investigated, before and 12 days after exposure to 13,000-lux light for 24 hours. The regulation of gene expression of the various proteins involved in iron homeostasis, such as transferrin, transferrin receptor, hephaestin, ferroportin, iron regulatory proteins 1 and 2, hepcidin, ceruloplasmin, and heme-oxygenase 1, was analyzed by quantitative (q)RT-PCR during exposure (2, 12, and 24 hours) and 24 hours after 1 day of exposure in the 4-month-old HFt(+/+) and HFt(+/-) mouse retinas. RESULTS: Retinal degeneration in the 4-month-old HFt(+/-) mice was more extensive than in the HFt(+/+) mice. Yet, it was more extensive in both of the 16-month-old mouse groups, revealing the combined effect of age and excessive light. Injury caused by excessive light modified the temporal gene expression of iron-regulating proteins similarly in the HFt(+/-) and HFt(+/+) mice. CONCLUSIONS: Loss of one allele of H ferritin appears to increase light-induced degeneration. This study highlighted that oxidative stress related to light-induced injury is associated with major changes in gene expression of iron metabolism proteins.
Resumo:
Background: Gene expression analysis has emerged as a major biological research area, with real-time quantitative reverse transcription PCR (RT-QPCR) being one of the most accurate and widely used techniques for expression profiling of selected genes. In order to obtain results that are comparable across assays, a stable normalization strategy is required. In general, the normalization of PCR measurements between different samples uses one to several control genes (e. g. housekeeping genes), from which a baseline reference level is constructed. Thus, the choice of the control genes is of utmost importance, yet there is not a generally accepted standard technique for screening a large number of candidates and identifying the best ones. Results: We propose a novel approach for scoring and ranking candidate genes for their suitability as control genes. Our approach relies on publicly available microarray data and allows the combination of multiple data sets originating from different platforms and/or representing different pathologies. The use of microarray data allows the screening of tens of thousands of genes, producing very comprehensive lists of candidates. We also provide two lists of candidate control genes: one which is breast cancer-specific and one with more general applicability. Two genes from the breast cancer list which had not been previously used as control genes are identified and validated by RT-QPCR. Open source R functions are available at http://www.isrec.isb-sib.ch/similar to vpopovic/research/ Conclusion: We proposed a new method for identifying candidate control genes for RT-QPCR which was able to rank thousands of genes according to some predefined suitability criteria and we applied it to the case of breast cancer. We also empirically showed that translating the results from microarray to PCR platform was achievable.
Resumo:
La douleur neuropathique est définie comme une douleur causée par une lésion du système nerveux somato-sensoriel. Elle se caractérise par des douleurs exagérées, spontanées, ou déclenchées par des stimuli normalement non douloureux (allodynie) ou douloureux (hyperalgésie). Bien qu'elle concerne 7% de la population, ses mécanismes biologiques ne sont pas encore élucidés. L'étude des variations d'expressions géniques dans les tissus-clés des voies sensorielles (notamment le ganglion spinal et la corne dorsale de la moelle épinière) à différents moments après une lésion nerveuse périphérique permettrait de mettre en évidence de nouvelles cibles thérapeutiques. Elles se détectent de manière sensible par reverse transcription quantitative real-time polymerase chain reaction (RT- qPCR). Pour garantir des résultats fiables, des guidelines ont récemment recommandé la validation des gènes de référence utilisés pour la normalisation des données ("Minimum information for publication of quantitative real-time PCR experiments", Bustin et al 2009). Après recherche dans la littérature des gènes de référence fréquemment utilisés dans notre modèle de douleur neuropathique périphérique SNI (spared nerve injury) et dans le tissu nerveux en général, nous avons établi une liste de potentiels bons candidats: Actin beta (Actb), Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ribosomal proteins 18S (18S), L13a (RPL13a) et L29 (RPL29), hypoxanthine phosphoribosyltransferase 1 (HPRT1) et hydroxymethyl-bilane synthase (HMBS). Nous avons évalué la stabilité d'expression de ces gènes dans le ganglion spinal et dans la corne dorsale à différents moments après la lésion nerveuse (SNI) en calculant des coefficients de variation et utilisant l'algorithme geNorm qui compare les niveaux d'expression entre les différents candidats et détermine la paire de gènes restante la plus stable. Il a aussi été possible de classer les gènes selon leur stabilité et d'identifier le nombre de gènes nécessaires pour une normalisation la plus précise. Les gènes les plus cités comme référence dans le modèle SNI ont été GAPDH, HMBS, Actb, HPRT1 et 18S. Seuls HPRT1 and 18S ont été précédemment validés dans des arrays de RT-qPCR. Dans notre étude, tous les gènes testés dans le ganglion spinal et dans la corne dorsale satisfont au critère de stabilité exprimé par une M-value inférieure à 1. Par contre avec un coefficient de variation (CV) supérieur à 50% dans le ganglion spinal, 18S ne peut être retenu. La paire de gènes la plus stable dans le ganglion spinal est HPRT1 et Actb et dans la corne dorsale il s'agit de RPL29 et RPL13a. L'utilisation de 2 gènes de référence stables suffit pour une normalisation fiable. Nous avons donc classé et validé Actb, RPL29, RPL13a, HMBS, GAPDH, HPRT1 et 18S comme gènes de référence utilisables dans la corne dorsale pour le modèle SNI chez le rat. Dans le ganglion spinal 18S n'a pas rempli nos critères. Nous avons aussi déterminé que la combinaison de deux gènes de référence stables suffit pour une normalisation précise. Les variations d'expression génique de potentiels gènes d'intérêts dans des conditions expérimentales identiques (SNI, tissu et timepoints post SNI) vont pouvoir se mesurer sur la base d'une normalisation fiable. Non seulement il sera possible d'identifier des régulations potentiellement importantes dans la genèse de la douleur neuropathique mais aussi d'observer les différents phénotypes évoluant au cours du temps après lésion nerveuse.
Resumo:
Applications of genetic constructs with multiple promoters, which are fused with reporter genes and simultaneous monitoring of various events in cells, have gained special attention in recent years. Lentiviral vectors, with their distinctive characteristics, have been considered to monitor the developmental changes of cells in vitro. In this study, we constructed a novel lentiviral vector (FUM-M), containing two germ cell-specific promoters (Stra8 and c-kit), fused with ZsGreen and DsRed2 reporter genes, and evaluated its efficiency in different cells following treatments with retinoic acid and DMSO. Several cell lines (P19, GC-1 spg and HEK293T) were transduced with this vector, and functional capabilities of the promoters were verified by flow cytometry and quantitative RT-PCR. Our results indicate that FUM-M shows dynamic behavior in the presence and absence of extrinsic factors. A correlation was also observed between the function of promoters, present in the lentiviral construct and the endogenous level of the Stra8 and c-kit mRNAs in the cells. In conclusion, we recommend this strategy, which needs further optimization of the constructs, as a beneficial and practical way to screen chemical inducers involved in cellular differentiation toward germ-like cells.
Resumo:
Applications of genetic constructs with multiple promoters, which are fused with reporter genes and simultaneous monitoring of various events in cells, have gained special attention in recent years. Lentiviral vectors, with their distinctive characteristics, have been considered to monitor the developmental changes of cells in vitro. In this study, we constructed a novel lentiviral vector (FUM-M), containing two germ cell-specific promoters (Stra8 and c-kit), fused with ZsGreen and DsRed2 reporter genes, and evaluated its efficiency in different cells following treatments with retinoic acid and DMSO. Several cell lines (P19, GC-1 spg and HEK293T) were transduced with this vector, and functional capabilities of the promoters were verified by flow cytometry and quantitative RT-PCR. Our results indicate that FUM-M shows dynamic behavior in the presence and absence of extrinsic factors. A correlation was also observed between the function of promoters, present in the lentiviral construct and the endogenous level of the Stra8 and c-kit mRNAs in the cells. In conclusion, we recommend this strategy, which needs further optimization of the constructs, as a beneficial and practical way to screen chemical inducers involved in cellular differentiation toward germ-like cells.
Resumo:
Molecular monitoring of BCR/ABL transcripts by real time quantitative reverse transcription PCR (qRT-PCR) is an essential technique for clinical management of patients with BCR/ABL-positive CML and ALL. Though quantitative BCR/ABL assays are performed in hundreds of laboratories worldwide, results among these laboratories cannot be reliably compared due to heterogeneity in test methods, data analysis, reporting, and lack of quantitative standards. Recent efforts towards standardization have been limited in scope. Aliquots of RNA were sent to clinical test centers worldwide in order to evaluate methods and reporting for e1a2, b2a2, and b3a2 transcript levels using their own qRT-PCR assays. Total RNA was isolated from tissue culture cells that expressed each of the different BCR/ABL transcripts. Serial log dilutions were prepared, ranging from 100 to 10-5, in RNA isolated from HL60 cells. Laboratories performed 5 independent qRT-PCR reactions for each sample type at each dilution. In addition, 15 qRT-PCR reactions of the 10-3 b3a2 RNA dilution were run to assess reproducibility within and between laboratories. Participants were asked to run the samples following their standard protocols and to report cycle threshold (Ct), quantitative values for BCR/ABL and housekeeping genes, and ratios of BCR/ABL to housekeeping genes for each sample RNA. Thirty-seven (n=37) participants have submitted qRT-PCR results for analysis (36, 37, and 34 labs generated data for b2a2, b3a2, and e1a2, respectively). The limit of detection for this study was defined as the lowest dilution that a Ct value could be detected for all 5 replicates. For b2a2, 15, 16, 4, and 1 lab(s) showed a limit of detection at the 10-5, 10-4, 10-3, and 10-2 dilutions, respectively. For b3a2, 20, 13, and 4 labs showed a limit of detection at the 10-5, 10-4, and 10-3 dilutions, respectively. For e1a2, 10, 21, 2, and 1 lab(s) showed a limit of detection at the 10-5, 10-4, 10-3, and 10-2 dilutions, respectively. Log %BCR/ABL ratio values provided a method for comparing results between the different laboratories for each BCR/ABL dilution series. Linear regression analysis revealed concordance among the majority of participant data over the 10-1 to 10-4 dilutions. The overall slope values showed comparable results among the majority of b2a2 (mean=0.939; median=0.9627; range (0.399 - 1.1872)), b3a2 (mean=0.925; median=0.922; range (0.625 - 1.140)), and e1a2 (mean=0.897; median=0.909; range (0.5174 - 1.138)) laboratory results (Fig. 1-3)). Thirty-four (n=34) out of the 37 laboratories reported Ct values for all 15 replicates and only those with a complete data set were included in the inter-lab calculations. Eleven laboratories either did not report their copy number data or used other reporting units such as nanograms or cell numbers; therefore, only 26 laboratories were included in the overall analysis of copy numbers. The median copy number was 348.4, with a range from 15.6 to 547,000 copies (approximately a 4.5 log difference); the median intra-lab %CV was 19.2% with a range from 4.2% to 82.6%. While our international performance evaluation using serially diluted RNA samples has reinforced the fact that heterogeneity exists among clinical laboratories, it has also demonstrated that performance within a laboratory is overall very consistent. Accordingly, the availability of defined BCR/ABL RNAs may facilitate the validation of all phases of quantitative BCR/ABL analysis and may be extremely useful as a tool for monitoring assay performance. Ongoing analyses of these materials, along with the development of additional control materials, may solidify consensus around their application in routine laboratory testing and possible integration in worldwide efforts to standardize quantitative BCR/ABL testing.
Resumo:
In the colon, the urokinase-type plasminogen activator (uPA), its receptor (uPAR), and plasminogen activator inhibitors, PAI-1 and PAI-2, are implicated in the transition from mucosa to adenoma and tumour progression. However, expression in the mucosa adjacent, or distant, to an adenoma has not yet been investigated. Three biopsies from mucosae adjacent (20 cm, ipsilateral) and distant (contralateral) to an isolated tubular adenoma were analysed in 14 patients and 8 controls. Laser microdissection isolated stromal and epithelial crypt components, and quantitative RT-PCR analyses of uPA, uPAR, PAI-1 and PAI-2 mRNA levels were performed. Among controls, no significant differences in the markers were noted. With left colon isolated tubular adenoma, uPA, uPAR, and PAI-2 mRNA levels were significantly increased in the adjacent mucosal stroma compared to epithelial crypt levels (p < 0.05). In right colon adenoma, the mRNA levels of these 3 molecular markers were significantly increased only in the adjacent mucosal stromal samples (p < 0.05). Isolated tubular adenoma in the colon increases significantly the mRNA levels of 3 proteolysis-associated molecular markers in the stromal, but not in the epithelial, components of adjacent mucosa. These results suggest the presence of regional and dynamic interactions in apparently non-involved mucosae.
Resumo:
Functional RNA structures play an important role both in the context of noncoding RNA transcripts as well as regulatory elements in mRNAs. Here we present a computational study to detect functional RNA structures within the ENCODE regions of the human genome. Since structural RNAs in general lack characteristic signals in primary sequence, comparative approaches evaluating evolutionary conservation of structures are most promising. We have used three recently introduced programs based on either phylogenetic-stochastic context-free grammar (EvoFold) or energy directed folding (RNAz and AlifoldZ), yielding several thousand candidate structures (corresponding to approximately 2.7% of the ENCODE regions). EvoFold has its highest sensitivity in highly conserved and relatively AU-rich regions, while RNAz favors slightly GC-rich regions, resulting in a relatively small overlap between methods. Comparison with the GENCODE annotation points to functional RNAs in all genomic contexts, with a slightly increased density in 3'-UTRs. While we estimate a significant false discovery rate of approximately 50%-70% many of the predictions can be further substantiated by additional criteria: 248 loci are predicted by both RNAz and EvoFold, and an additional 239 RNAz or EvoFold predictions are supported by the (more stringent) AlifoldZ algorithm. Five hundred seventy RNAz structure predictions fall into regions that show signs of selection pressure also on the sequence level (i.e., conserved elements). More than 700 predictions overlap with noncoding transcripts detected by oligonucleotide tiling arrays. One hundred seventy-five selected candidates were tested by RT-PCR in six tissues, and expression could be verified in 43 cases (24.6%).
Resumo:
OBJECTIVE To establish the role of the transcription factor Pax4 in pancreatic islet expansion and survival in response to physiological stress and its impact on glucose metabolism, we generated transgenic mice conditionally and selectively overexpressing Pax4 or a diabetes-linked mutant variant (Pax4R129 W) in β-cells. RESEARCH DESIGN AND METHODS Glucose homeostasis and β-cell death and proliferation were assessed in Pax4- or Pax4R129 W-overexpressing transgenic animals challenged with or without streptozotocin. Isolated transgenic islets were also exposed to cytokines, and apoptosis was evaluated by DNA fragmentation or cytochrome C release. The expression profiles of proliferation and apoptotic genes and β-cell markers were studied by immunohistochemistry and quantitative RT-PCR. RESULTS Pax4 but not Pax4R129 W protected animals against streptozotocin-induced hyperglycemia and isolated islets from cytokine-mediated β-cell apoptosis. Cytochrome C release was abrogated in Pax4 islets treated with cytokines. Interleukin-1β transcript levels were suppressed in Pax4 islets, whereas they were increased along with NOS2 in Pax4R129 W islets. Bcl-2, Cdk4, and c-myc expression levels were increased in Pax4 islets while MafA, insulin, and GLUT2 transcript levels were suppressed in both animal models. Long-term Pax4 expression promoted proliferation of a Pdx1-positive cell subpopulation while impeding insulin secretion. Suppression of Pax4 rescued this defect with a concomitant increase in pancreatic insulin content. CONCLUSIONS Pax4 protects adult islets from stress-induced apoptosis by suppressing selective nuclear factor-κB target genes while increasing Bcl-2 levels. Furthermore, it promotes dedifferentiation and proliferation of β-cells through MafA repression, with a concomitant increase in Cdk4 and c-myc expression.