10 resultados para proto-Basque
em Université de Lausanne, Switzerland
Resumo:
Retroviral transfer of T cell antigen receptor (TCR) genes selected by circumventing tolerance to broad tumor- and leukemia-associated antigens in human leukocyte antigen (HLA)-A*0201 (A2.1) transgenic (Tg) mice allows the therapeutic reprogramming of human T lymphocytes. Using a human CD8 x A2.1/Kb mouse derived TCR specific for natural peptide-A2.1 (pA2.1) complexes comprising residues 81-88 of the human homolog of the murine double-minute 2 oncoprotein, MDM2(81-88), we found that the heterodimeric CD8 alpha beta coreceptor, but not normally expressed homodimeric CD8 alpha alpha, is required for tetramer binding and functional redirection of TCR- transduced human T cells. CD8+T cells that received a humanized derivative of the MDM2 TCR bound pA2.1 tetramers only in the presence of an anti-human-CD8 anti-body and required more peptide than wild-type (WT) MDM2 TCR+T cells to mount equivalent cytotoxicity. They were, however, sufficiently effective in recognizing malignant targets including fresh leukemia cells. Most efficient expression of transduced TCR in human T lymphocytes was governed by mouse as compared to human constant (C) alphabeta domains, as demonstrated with partially humanized and murinized TCR of primary mouse and human origin, respectively. We further observed a reciprocal relationship between the level of Tg WT mouse relative to natural human TCR expression, resulting in T cells with decreased normal human cell surface TCR. In contrast, natural human TCR display remained unaffected after delivery of the humanized MDM2 TCR. These results provide important insights into the molecular basis of TCR gene therapy of malignant disease.
Resumo:
In previous work we found that mezerein, a C kinase activator, as well as basic fibroblast growth factor (FGF-2) induce demyelination and partial oligodendrocyte dedifferentiation in highly differentiated aggregating brain cell cultures. Here we show that following protein kinase C activator-induced demyelination, effective remyelination occurs. We found that mezerein or FGF-2 caused a transient increase in DNA synthesis following a pronounced decrease of the myelin markers myelin basic protein and 2',3'-cyclic nucleotide 3'-phosphohydrolase. Both oligodendrocytes and astrocytes were involved in this mitogenic response. Within 17 days after demyelination, myelin was restored to the level of the untreated controls. Transient mitotic activity was indispensable for remyelination. The present results suggest that myelinating oligodendrocytes retain the capacity to reenter the cell cycle, and that this plasticity is important for the regeneration of the oligodendrocyte lineage and remyelination. Although it cannot be excluded that a quiescent population of oligodendrocyte precursor cells was present in the aggregates and able to proliferate, differentiate and remyelinate, we could not find evidence supporting this view.
Resumo:
The MET pathway is dysregulated in many human cancers and promotes tumour growth, invasion and dissemination. Abnormalities in MET signalling have been reported to correlate with poor clinical outcomes and drug resistance in patients with cancer. Thus, MET has emerged as an attractive target for cancer therapy. Several MET inhibitors have been introduced into the clinic, and are currently in all phases of clinical trials. In general, initial results from these studies indicate only a modest benefit in unselected populations. In this Review, we discuss current challenges in developing MET inhibitors--including identification of predictive biomarkers--as well as the most-efficient ways to combine these drugs with other targeted agents or with classic chemotherapy or radiotherapy.
Resumo:
Although chronic hypoxia is a claimed myocardial risk factor reducing tolerance to ischemia/reperfusion (I/R), intermittent reoxygenation has beneficial effects and enhances heart tolerance to I/R. AIM OF THE STUDY: To test the hypothesis that, by mimicking intermittent reoxygenation, selective inhibition of phosphodiesterase-5 activity improves ischemia tolerance during hypoxia. Adult male Sprague-Dawley rats were exposed to hypoxia for 15 days (10% O₂) and treated with placebo, sildenafil (1.4 mg/kg/day, i. p.), intermittent reoxygenation (1 h/day exposure to room air) or both. Controls were normoxic hearts. To assess tolerance to I/R all hearts were subjected to 30-min regional ischemia by left anterior descending coronary artery ligation followed by 3 h-reperfusion. Whereas hypoxia depressed tolerance to I/R, both sildenafil and intermittent reoxygenation reduced the infarct size without exhibiting cumulative effects. The changes in myocardial cGMP, apoptosis (DNA fragmentation), caspase-3 activity (alternative marker for cardiomyocyte apoptosis), eNOS phosphorylation and Akt activity paralleled the changes in cardioprotection. However, the level of plasma nitrates and nitrites was higher in the sildenafil+intermittent reoxygenation than sildenafil and intermittent reoxygenation groups, whereas total eNOS and Akt proteins were unchanged throughout. CONCLUSIONS: Sildenafil administration has the potential to mimic the cardioprotective effects led by intermittent reoxygenation, thereby opening the possibility to treat patients unable to be reoxygenated through a pharmacological modulation of NO-dependent mechanisms.
Resumo:
BACKGROUND: We conducted a randomized, phase II, multicenter study to evaluate the anti-epidermal growth factor receptor (EGFR) mAb panitumumab (P) in combination with chemoradiotherapy (CRT) with standard-dose capecitabine as neoadjuvant treatment for wild-type KRAS locally advanced rectal cancer (LARC). PATIENTS AND METHODS: Patients with wild-type KRAS, T3-4 and/or N+ LARC were randomly assigned to receive CRT with or without P (6 mg/kg). The primary end-point was pathological near-complete or complete tumor response (pNC/CR), defined as grade 3 (pNCR) or 4 (pCR) histological regression by Dworak classification (DC). RESULTS: Forty of 68 patients were randomly assigned to P + CRT and 28 to CRT. pNC/CR was achieved in 21 patients (53%) treated with P + CRT [95% confidence interval (CI) 36%-69%] versus 9 patients (32%) treated with CRT alone (95% CI: 16%-52%). pCR was achieved in 4 (10%) and 5 (18%) patients, and pNCR in 17 (43%) and 4 (14%) patients. In immunohistochemical analysis, most DC 3 cells were not apoptotic. The most common grade ≥3 toxic effects in the P + CRT/CRT arm were diarrhea (10%/6%) and anastomotic leakage (15%/4%). CONCLUSIONS: The addition of panitumumab to neoadjuvant CRT in patients with KRAS wild-type LARC resulted in a high pNC/CR rate, mostly grade 3 DC. The results of both treatment arms exceeded prespecified thresholds. The addition of panitumumab increased toxicity.
Resumo:
The present study investigated promoter hypermethylation of TP53 regulatory pathways providing a potential link between epigenetic changes and mitochondrial DNA (mtDNA) alterations in breast cancer patients lacking a TP53 mutation. The possibility of using the cancer-specific alterations in serum samples as a blood-based test was also explored. Triple-matched samples (cancerous tissues, matched adjacent normal tissues and serum samples) from breast cancer patients were screened for TP53 mutations, and the promoter methylation profile of P14(ARF), MDM2, TP53 and PTEN genes was analyzed as well as mtDNA alterations, including D-loop mutations and mtDNA content. In the studied cohort, no mutation was found in TP53 (DNA-binding domain). Comparison of P14(ARF) and PTEN methylation patterns showed significant hypermethylation levels in tumor tissues (P < 0.05 and <0.01, respectively) whereas the TP53 tumor suppressor gene was not hypermethylated (P < 0.511). The proportion of PTEN methylation was significantly higher in serum than in the normal tissues and it has a significant correlation to tumor tissues (P < 0.05). mtDNA analysis revealed 36.36% somatic and 90.91% germline mutations in the D-loop region and also significant mtDNA depletion in tumor tissues (P < 0.01). In addition, the mtDNA content in matched serum was significantly lower than in the normal tissues (P < 0.05). These data can provide an insight into the management of a therapeutic approach based on the reversal of epigenetic silencing of the crucial genes involved in regulatory pathways of the tumor suppressor TP53. Additionally, release of significant aberrant methylated PTEN in matched serum samples might represent a promising biomarker for breast cancer.
Resumo:
Polymorphisms in IL28B were shown to affect clearance of hepatitis C virus (HCV) infection in genome-wide association (GWA) studies. Only a fraction of patients with chronic HCV infection develop liver fibrosis, a process that might also be affected by genetic factors. We performed a 2-stage GWA study of liver fibrosis progression related to HCV infection. We studied well-characterized HCV-infected patients of European descent who underwent liver biopsies before treatment. We defined various liver fibrosis phenotypes on the basis of METAVIR scores, with and without taking the duration of HCV infection into account. Our GWA analyses were conducted on a filtered primary cohort of 1161 patients using 780,650 single nucleotide polymorphisms (SNPs). We genotyped 96 SNPs with P values <5 × 10(-5) from an independent replication cohort of 962 patients. We then assessed the most interesting replicated SNPs using DNA samples collected from 219 patients who participated in separate GWA studies of HCV clearance. In the combined cohort of 2342 HCV-infected patients, the SNPs rs16851720 (in the total sample) and rs4374383 (in patients who received blood transfusions) were associated with fibrosis progression (P(combined) = 8.9 × 10(-9) and 1.1 × 10(-9), respectively). The SNP rs16851720 is located within RNF7, which encodes an antioxidant that protects against apoptosis. The SNP rs4374383, together with another replicated SNP, rs9380516 (P(combined) = 5.4 × 10(-7)), were linked to the functionally related genes MERTK and TULP1, which encode factors involved in phagocytosis of apoptotic cells by macrophages. Our GWA study identified several susceptibility loci for HCV-induced liver fibrosis; these were linked to genes that regulate apoptosis. Apoptotic control might therefore be involved in liver fibrosis.
Resumo:
Myc activity is emerging as a key element in acquisition and maintenance of stem cell properties. We have previously shown that c-Myc deficiency results in accumulation of defective hematopoietic stem cells (HSCs) due to niche-dependent differentiation defects. Here we report that immature HSCs coexpress c-myc and N-myc mRNA at similar levels. Although conditional deletion of N-myc in the bone marrow does not affect hematopoiesis, combined deficiency of c-Myc and N-Myc (dKO) results in pancytopenia and rapid lethality. Interestingly, proliferation of HSCs depends on both myc genes during homeostasis, but is c-Myc/N-Myc independent during bone marrow repair after injury. Strikingly, while most dKO hematopoietic cells undergo apoptosis, only self-renewing HSCs accumulate the cytotoxic molecule Granzyme B, normally employed by the innate immune system, thereby revealing an unexpected mechanism of stem cell apoptosis. Collectively, Myc activity (c-Myc and N-Myc) controls crucial aspects of HSC function including proliferation, differentiation, and survival.