2 resultados para protein modification

em Université de Lausanne, Switzerland


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human MRE11 is a key enzyme in DNA double-strand break repair and genome stability. Human MRE11 bears a glycine-arginine-rich (GAR) motif that is conserved among multicellular eukaryotic species. We investigated how this motif influences MRE11 function. Human MRE11 alone or a complex of MRE11, RAD50, and NBS1 (MRN) was methylated in insect cells, suggesting that this modification is conserved during evolution. We demonstrate that PRMT1 interacts with MRE11 but not with the MRN complex, suggesting that MRE11 arginine methylation occurs prior to the binding of NBS1 and RAD50. Moreover, the first six methylated arginines are essential for the regulation of MRE11 DNA binding and nuclease activity. The inhibition of arginine methylation leads to a reduction in MRE11 and RAD51 focus formation on a unique double-strand break in vivo. Furthermore, the MRE11-methylated GAR domain is sufficient for its targeting to DNA damage foci and colocalization with gamma-H2AX. These studies highlight an important role for the GAR domain in regulating MRE11 function at the biochemical and cellular levels during DNA double-strand break repair.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ubiquitination of proteins is a post-translational modification, which decides on the cellular fate of the protein. Addition of ubiquitin moieties to proteins is carried out by the sequential action of three enzymes: E1, ubiquitin-activating enzyme; E2, ubiquitin-conjugating enzyme; and E3, ubiquitin ligase. The TRAF-interacting protein (TRAIP, TRIP, RNF206) functions as Really Interesting New Gene (RING)-type E3 ubiquitin ligase, but its physiological substrates are not yet known. TRAIP was reported to interact with TRAF [tumor necrosis factor (TNF) receptor-associated factors] and the two tumor suppressors CYLD and Syk (spleen tyrosine kinase). Ectopically expressed TRAIP was shown to inhibit nuclear factor-kappa B (NF-κB) signalling. However, recent results suggested a role for TRAIP in biological processes other than NF-κB regulation. Knock-down of TRAIP in human epidermal keratinocytes repressed cellular proliferation and induced a block in the G1/S phase of the cell cycle without affecting NF-κB signalling. TRAIP is necessary for embryonal development as mutations affecting the Drosophila homologue of TRAIP are maternal effect-lethal mutants, and TRAIP knock-out mice die in utero because of aberrant regulation of cell proliferation and apoptosis. These findings underline the tight link between TRAIP and cell proliferation. In this review, we summarize the data on TRAIP and put them into a larger perspective regarding the role of TRAIP in the control of tissue homeostasis.