2 resultados para process theory
em Université de Lausanne, Switzerland
Resumo:
The present paper studies the probability of ruin of an insurer, if excess of loss reinsurance with reinstatements is applied. In the setting of the classical Cramer-Lundberg risk model, piecewise deterministic Markov processes are used to describe the free surplus process in this more general situation. It is shown that the finite-time ruin probability is both the solution of a partial integro-differential equation and the fixed point of a contractive integral operator. We exploit the latter representation to develop and implement a recursive algorithm for numerical approximation of the ruin probability that involves high-dimensional integration. Furthermore we study the behavior of the finite-time ruin probability under various levels of initial surplus and security loadings and compare the efficiency of the numerical algorithm with the computational alternative of stochastic simulation of the risk process. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
This paper studies a risk measure inherited from ruin theory and investigates some of its properties. Specifically, we consider a value-at-risk (VaR)-type risk measure defined as the smallest initial capital needed to ensure that the ultimate ruin probability is less than a given level. This VaR-type risk measure turns out to be equivalent to the VaR of the maximal deficit of the ruin process in infinite time. A related Tail-VaR-type risk measure is also discussed.