53 resultados para principal component analysis (PCA)
em Université de Lausanne, Switzerland
Resumo:
Diagnosis of several neurological disorders is based on the detection of typical pathological patterns in the electroencephalogram (EEG). This is a time-consuming task requiring significant training and experience. Automatic detection of these EEG patterns would greatly assist in quantitative analysis and interpretation. We present a method, which allows automatic detection of epileptiform events and discrimination of them from eye blinks, and is based on features derived using a novel application of independent component analysis. The algorithm was trained and cross validated using seven EEGs with epileptiform activity. For epileptiform events with compensation for eyeblinks, the sensitivity was 65 +/- 22% at a specificity of 86 +/- 7% (mean +/- SD). With feature extraction by PCA or classification of raw data, specificity reduced to 76 and 74%, respectively, for the same sensitivity. On exactly the same data, the commercially available software Reveal had a maximum sensitivity of 30% and concurrent specificity of 77%. Our algorithm performed well at detecting epileptiform events in this preliminary test and offers a flexible tool that is intended to be generalized to the simultaneous classification of many waveforms in the EEG.
Resumo:
The aim of this work is to evaluate the capabilities and limitations of chemometric methods and other mathematical treatments applied on spectroscopic data and more specifically on paint samples. The uniqueness of the spectroscopic data comes from the fact that they are multivariate - a few thousands variables - and highly correlated. Statistical methods are used to study and discriminate samples. A collection of 34 red paint samples was measured by Infrared and Raman spectroscopy. Data pretreatment and variable selection demonstrated that the use of Standard Normal Variate (SNV), together with removal of the noisy variables by a selection of the wavelengths from 650 to 1830 cm−1 and 2730-3600 cm−1, provided the optimal results for infrared analysis. Principal component analysis (PCA) and hierarchical clusters analysis (HCA) were then used as exploratory techniques to provide evidence of structure in the data, cluster, or detect outliers. With the FTIR spectra, the Principal Components (PCs) correspond to binder types and the presence/absence of calcium carbonate. 83% of the total variance is explained by the four first PCs. As for the Raman spectra, we observe six different clusters corresponding to the different pigment compositions when plotting the first two PCs, which account for 37% and 20% respectively of the total variance. In conclusion, the use of chemometrics for the forensic analysis of paints provides a valuable tool for objective decision-making, a reduction of the possible classification errors, and a better efficiency, having robust results with time saving data treatments.
Resumo:
Laser desorption ionisation mass spectrometry (LDI-MS) has demonstrated to be an excellent analytical method for the forensic analysis of inks on a questioned document. The ink can be analysed directly on its substrate (paper) and hence offers a fast method of analysis as sample preparation is kept to a minimum and more importantly, damage to the document is minimised. LDI-MS has also previously been reported to provide a high power of discrimination in the statistical comparison of ink samples and has the potential to be introduced as part of routine ink analysis. This paper looks into the methodology further and evaluates statistically the reproducibility and the influence of paper on black gel pen ink LDI-MS spectra; by comparing spectra of three different black gel pen inks on three different paper substrates. Although generally minimal, the influences of sample homogeneity and paper type were found to be sample dependent. This should be taken into account to avoid the risk of false differentiation of black gel pen ink samples. Other statistical approaches such as principal component analysis (PCA) proved to be a good alternative to correlation coefficients for the comparison of whole mass spectra.
Resumo:
Functional connectivity (FC) as measured by correlation between fMRI BOLD time courses of distinct brain regions has revealed meaningful organization of spontaneous fluctuations in the resting brain. However, an increasing amount of evidence points to non-stationarity of FC; i.e., FC dynamically changes over time reflecting additional and rich information about brain organization, but representing new challenges for analysis and interpretation. Here, we propose a data-driven approach based on principal component analysis (PCA) to reveal hidden patterns of coherent FC dynamics across multiple subjects. We demonstrate the feasibility and relevance of this new approach by examining the differences in dynamic FC between 13 healthy control subjects and 15 minimally disabled relapse-remitting multiple sclerosis patients. We estimated whole-brain dynamic FC of regionally-averaged BOLD activity using sliding time windows. We then used PCA to identify FC patterns, termed "eigenconnectivities", that reflect meaningful patterns in FC fluctuations. We then assessed the contributions of these patterns to the dynamic FC at any given time point and identified a network of connections centered on the default-mode network with altered contribution in patients. Our results complement traditional stationary analyses, and reveal novel insights into brain connectivity dynamics and their modulation in a neurodegenerative disease.
Resumo:
The reported prevalence of late-life depressive symptoms varies widely between studies, a finding that might be attributed to cultural as well as methodological factors. The EURO-D scale was developed to allow valid comparison of prevalence and risk associations between European countries. This study used Confirmatory Factor Analysis (CFA) and Rasch models to assess whether the goal of measurement invariance had been achieved; using EURO-D scale data collected in 10 European countries as part of the Survey of Health, Ageing and Retirement in Europe (SHARE) (n = 22,777). The results suggested a two-factor solution (Affective Suffering and Motivation) after Principal Component Analysis (PCA) in 9 of the 10 countries. With CFA, in all countries, the two-factor solution had better overall goodness-of-fit than the one-factor solution. However, only the Affective Suffering subscale was equivalent across countries, while the Motivation subscale was not. The Rasch model indicated that the EURO-D was a hierarchical scale. While the calibration pattern was similar across countries, between countries agreement in item calibrations was stronger for the items loading on the affective suffering than the motivation factor. In conclusion, there is evidence to support the EURO-D as either a uni-dimensional or bi-dimensional scale measure of depressive symptoms in late-life across European countries. The Affective Suffering sub-component had more robust cross-cultural validity than the Motivation sub-component.
Resumo:
Objective: To assess the factorial validity of the Portuguese version of the Maslach Burnout Inventory - Human Services Survey (MBI-HSS). Methods: Between November 2010 and November 2011 a Portuguese version of the MBI-HSS was applied to 151 Portuguese family doctors (55% women, median age 54 years). The factorial structure of the MBI-HSS was examined by principal component analysis (PCA) and confirmatory factor analysis (CFA). Internal consistency estimates of the MBI-HSS were determined with Cronbach's alpha. Results: The fit of the hypothesized three-factor model to the data was superior to the alternative two-factor and four-factor models. CFA supported MBI-HSS as an acceptable measure to evaluate burnout and deletion of items 12 and 16 improved the goodness of fit of the model. In PCA, the three-factor model explained 50.58% of the variance and the four-factor model did not lead to understandable components. Item 12 was also found to be problematic in PCA. The Cronbach's alpha was satisfactory for emotional exhaustion (alpha=0.90), lack of personal accomplishment (alpha=0.73), and depersonalization (alpha=0.64). Conclusion: The Portuguese version of the MBI-HSS was found to be reliable to measure burnout among Portuguese medical doctors. We also recommend the deletion of items 12 and 16 from the MBI-HSS.
Resumo:
This study represents the most extensive analysis of batch-to-batch variations in spray paint samples to date. The survey was performed as a collaborative project of the ENFSI (European Network of Forensic Science Institutes) Paint and Glass Working Group (EPG) and involved 11 laboratories. Several studies have already shown that paint samples of similar color but from different manufacturers can usually be differentiated using an appropriate analytical sequence. The discrimination of paints from the same manufacturer and color (batch-to-batch variations) is of great interest and these data are seldom found in the literature. This survey concerns the analysis of batches from different color groups (white, papaya (special shade of orange), red and black) with a wide range of analytical techniques and leads to the following conclusions. Colored batch samples are more likely to be differentiated since their pigment composition is more complex (pigment mixtures, added pigments) and therefore subject to variations. These variations may occur during the paint production but may also occur when checking the paint shade in quality control processes. For these samples, techniques aimed at color/pigment(s) characterization (optical microscopy, microspectrophotometry (MSP), Raman spectroscopy) provide better discrimination than techniques aimed at the organic (binder) or inorganic composition (fourier transform infrared spectroscopy (FTIR) or elemental analysis (SEM - scanning electron microscopy and XRF - X-ray fluorescence)). White samples contain mainly titanium dioxide as a pigment and the main differentiation is based on the binder composition (Csingle bondH stretches) detected either by FTIR or Raman. The inorganic composition (elemental analysis) also provides some discrimination. Black samples contain mainly carbon black as a pigment and are problematic with most of the spectroscopic techniques. In this case, pyrolysis-GC/MS represents the best technique to detect differences. Globally, Py-GC/MS may show a high potential of discrimination on all samples but the results are highly dependent on the specific instrumental conditions used. Finally, the discrimination of samples when data was interpreted visually as compared to statistically using principal component analysis (PCA) yielded very similar results. PCA increases sensitivity and could perform better on specific samples, but one first has to ensure that all non-informative variation (baseline deviation) is eliminated by applying correct pre-treatments. Statistical treatments can be used on a large data set and, when combined with an expert's opinion, will provide more objective criteria for decision making.
Resumo:
The Stages of Change Readiness and Treatment Eagerness Scale (SOCRATES), a 19-item instrument developed to assess readiness to change alcohol use among individuals presenting for specialized alcohol treatment, has been used in various populations and settings. Its factor structure and concurrent validity has been described for specialized alcohol treatment settings and primary care. The purpose of this study was to determine the factor structure and concurrent validity of the SOCRATES among medical inpatients with unhealthy alcohol use not seeking help for specialized alcohol treatment. The subjects were 337 medical inpatients with unhealthy alcohol use, identified during their hospital stay. Most of them had alcohol dependence (76%). We performed an Alpha Factor Analysis (AFA) and Principal Component Analysis (PCA) of the 19 SOCRATES items, and forced 3 factors and 2 components, in order to replicate findings from Miller and Tonigan (Miller, W. R., & Tonigan, J. S., (1996). Assessing drinkers' motivations for change: The Stages of Change Readiness and Treatment Eagerness Scale (SOCRATES). Psychology of Addictive Behavior, 10, 81-89.) and Maisto et al. (Maisto, S. A., Conigliaro, J., McNeil, M., Kraemer, K., O'Connor, M., & Kelley, M. E., (1999). Factor structure of the SOCRATES in a sample of primary care patients. Addictive Behavior, 24(6), 879-892.). Our analysis supported the view that the 2 component solution proposed by Maisto et al. (Maisto, S.A., Conigliaro, J., McNeil, M., Kraemer, K., O'Connor, M., & Kelley, M.E., (1999). Factor structure of the SOCRATES in a sample of primary care patients. Addictive Behavior, 24(6), 879-892.) is more appropriate for our data than the 3 factor solution proposed by Miller and Tonigan (Miller, W. R., & Tonigan, J. S., (1996). Assessing drinkers' motivations for change: The Stages of Change Readiness and Treatment Eagerness Scale (SOCRATES). Psychology of Addictive Behavior, 10, 81-89.). The first component measured Perception of Problems and was more strongly correlated with severity of alcohol-related consequences, presence of alcohol dependence, and alcohol consumption levels (average number of drinks per day and total number of binge drinking days over the past 30 days) compared to the second component measuring Taking Action. Our findings support the view that the SOCRATES is comprised of two important readiness constructs in general medical patients identified by screening.
Resumo:
Counterfeit pharmaceutical products have become a widespread problem in the last decade. Various analytical techniques have been applied to discriminate between genuine and counterfeit products. Among these, Near-infrared (NIR) and Raman spectroscopy provided promising results.The present study offers a methodology allowing to provide more valuable information fororganisations engaged in the fight against counterfeiting of medicines.A database was established by analyzing counterfeits of a particular pharmaceutical product using Near-infrared (NIR) and Raman spectroscopy. Unsupervised chemometric techniques (i.e. principal component analysis - PCA and hierarchical cluster analysis - HCA) were implemented to identify the classes within the datasets. Gas Chromatography coupled to Mass Spectrometry (GC-MS) and Fourier Transform Infrared Spectroscopy (FT-IR) were used to determine the number of different chemical profiles within the counterfeits. A comparison with the classes established by NIR and Raman spectroscopy allowed to evaluate the discriminating power provided by these techniques. Supervised classifiers (i.e. k-Nearest Neighbors, Partial Least Squares Discriminant Analysis, Probabilistic Neural Networks and Counterpropagation Artificial Neural Networks) were applied on the acquired NIR and Raman spectra and the results were compared to the ones provided by the unsupervised classifiers.The retained strategy for routine applications, founded on the classes identified by NIR and Raman spectroscopy, uses a classification algorithm based on distance measures and Receiver Operating Characteristics (ROC) curves. The model is able to compare the spectrum of a new counterfeit with that of previously analyzed products and to determine if a new specimen belongs to one of the existing classes, consequently allowing to establish a link with other counterfeits of the database.
Resumo:
Tire traces can be observed on several crime scenes as vehicles are often used by criminals. The tread abrasion on the road, while braking or skidding, leads to the production of small rubber particles which can be collected for comparison purposes. This research focused on the statistical comparison of Py-GC/MS profiles of tire traces and tire treads. The optimisation of the analytical method was carried out using experimental designs. The aim was to determine the best pyrolysis parameters regarding the repeatability of the results. Thus, the pyrolysis factor effect could also be calculated. The pyrolysis temperature was found to be five time more important than time. Finally, a pyrolysis at 650 °C during 15 s was selected. Ten tires of different manufacturers and models were used for this study. Several samples were collected on each tire, and several replicates were carried out to study the variability within each tire (intravariability). More than eighty compounds were integrated for each analysis and the variability study showed that more than 75% presented a relative standard deviation (RSD) below 5% for the ten tires, thus supporting a low intravariability. The variability between the ten tires (intervariability) presented higher values and the ten most variant compounds had a RSD value above 13%, supporting their high potential of discrimination between the tires tested. Principal Component Analysis (PCA) was able to fully discriminate the ten tires with the help of the first three principal components. The ten tires were finally used to perform braking tests on a racetrack with a vehicle equipped with an anti-lock braking system. The resulting tire traces were adequately collected using sheets of white gelatine. As for tires, the intravariability for the traces was found to be lower than the intervariability. Clustering methods were carried out and the Ward's method based on the squared Euclidean distance was able to correctly group all of the tire traces replicates in the same cluster than the replicates of their corresponding tire. Blind tests on traces were performed and were correctly assigned to their tire source. These results support the hypothesis that the tested tires, of different manufacturers and models, can be discriminated by a statistical comparison of their chemical profiles. The traces were found to be not differentiable from their source but differentiable from all the other tires present in the subset. The results are promising and will be extended on a larger sample set.
Resumo:
Raman spectroscopy combined with chemometrics has recently become a widespread technique for the analysis of pharmaceutical solid forms. The application presented in this paper is the investigation of counterfeit medicines. This increasingly serious issue involves networks that are an integral part of industrialized organized crime. Efficient analytical tools are consequently required to fight against it. Quick and reliable authentication means are needed to allow the deployment of measures from the company and the authorities. For this purpose a method in two steps has been implemented here. The first step enables the identification of pharmaceutical tablets and capsules and the detection of their counterfeits. A nonlinear classification method, the Support Vector Machines (SVM), is computed together with a correlation with the database and the detection of Active Pharmaceutical Ingredient (API) peaks in the suspect product. If a counterfeit is detected, the second step allows its chemical profiling among former counterfeits in a forensic intelligence perspective. For this second step a classification based on Principal Component Analysis (PCA) and correlation distance measurements is applied to the Raman spectra of the counterfeits.
Resumo:
In traffic accidents involving motorcycles, paint traces can be transferred from the rider's helmet or smeared onto its surface. These traces are usually in the form of chips or smears and are frequently collected for comparison purposes. This research investigates the physical and chemical characteristics of the coatings found on motorcycles helmets. An evaluation of the similarities between helmet and automotive coating systems was also performed.Twenty-seven helmet coatings from 15 different brands and 22 models were considered. One sample per helmet was collected and observed using optical microscopy. FTIR spectroscopy was then used and seven replicate measurements per layer were carried out to study the variability of each coating system (intravariability). Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA) were also performed on the infrared spectra of the clearcoats and basecoats of the data set. The most common systems were composed of two or three layers, consistently involving a clearcoat and basecoat. The coating systems of helmets with composite shells systematically contained a minimum of three layers. FTIR spectroscopy results showed that acrylic urethane and alkyd urethane were the most frequent binders used for clearcoats and basecoats. A high proportion of the coatings were differentiated (more than 95%) based on microscopic examinations. The chemical and physical characteristics of the coatings allowed the differentiation of all but one pair of helmets of the same brand, model and color. Chemometrics (PCA and HCA) corroborated classification based on visual comparisons of the spectra and allowed the study of the whole data set at once (i.e., all spectra of the same layer). Thus, the intravariability of each helmet and its proximity to the others (intervariability) could be more readily assessed. It was also possible to determine the most discriminative chemical variables based on the study of the PCA loadings. Chemometrics could therefore be used as a complementary decision-making tool when many spectra and replicates have to be taken into account. Similarities between automotive and helmet coating systems were highlighted, in particular with regard to automotive coating systems on plastic substrates (microscopy and FTIR). However, the primer layer of helmet coatings was shown to differ from the automotive primer. If the paint trace contains this layer, the risk of misclassification (i.e., helmet versus vehicle) is reduced. Nevertheless, a paint examiner should pay close attention to these similarities when analyzing paint traces, especially regarding smears or paint chips presenting an incomplete layer system.
Resumo:
PURPOSE: Statistical shape and appearance models play an important role in reducing the segmentation processing time of a vertebra and in improving results for 3D model development. Here, we describe the different steps in generating a statistical shape model (SSM) of the second cervical vertebra (C2) and provide the shape model for general use by the scientific community. The main difficulties in its construction are the morphological complexity of the C2 and its variability in the population. METHODS: The input dataset is composed of manually segmented anonymized patient computerized tomography (CT) scans. The alignment of the different datasets is done with the procrustes alignment on surface models, and then, the registration is cast as a model-fitting problem using a Gaussian process. A principal component analysis (PCA)-based model is generated which includes the variability of the C2. RESULTS: The SSM was generated using 92 CT scans. The resulting SSM was evaluated for specificity, compactness and generalization ability. The SSM of the C2 is freely available to the scientific community in Slicer (an open source software for image analysis and scientific visualization) with a module created to visualize the SSM using Statismo, a framework for statistical shape modeling. CONCLUSION: The SSM of the vertebra allows the shape variability of the C2 to be represented. Moreover, the SSM will enable semi-automatic segmentation and 3D model generation of the vertebra, which would greatly benefit surgery planning.
Resumo:
Introduction: Coordination is a strategy chosen by the central nervous system to control the movements and maintain stability during gait. Coordinated multi-joint movements require a complex interaction between nervous outputs, biomechanical constraints, and pro-prioception. Quantitatively understanding and modeling gait coordination still remain a challenge. Surgeons lack a way to model and appreciate the coordination of patients before and after surgery of the lower limbs. Patients alter their gait patterns and their kinematic synergies when they walk faster or slower than normal speed to maintain their stability and minimize the energy cost of locomotion. The goal of this study was to provide a dynamical system approach to quantitatively describe human gait coordination and apply it to patients before and after total knee arthroplasty. Methods: A new method of quantitative analysis of interjoint coordination during gait was designed, providing a general model to capture the whole dynamics and showing the kinematic synergies at various walking speeds. The proposed model imposed a relationship among lower limb joint angles (hips and knees) to parameterize the dynamics of locomotion of each individual. An integration of different analysis tools such as Harmonic analysis, Principal Component Analysis, and Artificial Neural Network helped overcome high-dimensionality, temporal dependence, and non-linear relationships of the gait patterns. Ten patients were studied using an ambulatory gait device (Physilog®). Each participant was asked to perform two walking trials of 30m long at 3 different speeds and to complete an EQ-5D questionnaire, a WOMAC and Knee Society Score. Lower limbs rotations were measured by four miniature angular rate sensors mounted respectively, on each shank and thigh. The outcomes of the eight patients undergoing total knee arthroplasty, recorded pre-operatively and post-operatively at 6 weeks, 3 months, 6 months and 1 year were compared to 2 age-matched healthy subjects. Results: The new method provided coordination scores at various walking speeds, ranged between 0 and 10. It determined the overall coordination of the lower limbs as well as the contribution of each joint to the total coordination. The difference between the pre-operative and post-operative coordination values were correlated with the improvements of the subjective outcome scores. Although the study group was small, the results showed a new way to objectively quantify gait coordination of patients undergoing total knee arthroplasty, using only portable body-fixed sensors. Conclusion: A new method for objective gait coordination analysis has been developed with very encouraging results regarding the objective outcome of lower limb surgery.