39 resultados para plastid
em Université de Lausanne, Switzerland
Resumo:
A protein from Arabidopsis thaliana (L.) Heynh. showing homology to animal proteins of the NaPi-1 family, involved in the transport of inorganic phosphate, chloride, glutamate and sialic acid, has been characterized. This protein, named ANTR2 (for anion transporters) was shown by chloroplast subfractionation to be localized to the plastid inner envelope in both A. thaliana and Spinacia oleracea (L.). Immunolocalization revealed that ANTR2 was expressed in the leaf mesophyll cells as well as in the developing embryo at the upturned-U stage. Five additional homologues of ANTR2 are found in the Arabidopsis genome, of which one was shown by green fluorescent protein (GFP) fusion to be also located in the chloroplast. All ANTR proteins share homology to the animal NaPi-1 family, as well as to other organic-anion transporters that are members of the Anion:Cation Symporter (ACS) family, and share the main features of transporters from this family, including the presence of 12 putative transmembrane domains and of a 7-amino acid motif in the fourth putative transmembrane domain. ANTR2 thus represent a novel protein of the plastid inner envelope that is likely to be involved in anion transport.
Resumo:
This study reports the isolation and polymorphism characterization of four plastid indels and six nuclear microsatellite loci in the invasive plant Heracleum mantegazzianum. These markers were tested in 27 individuals from two distant H. mantegazzianum populations. Plastid indels revealed the presence of five chlorotypes while five nuclear microsatellite loci rendered polymorphism. Applications of these markers include population genetics and phylogeography of H. mantegazzianum. A very good transferability of markers to Heracleum sphondylium was demonstrated.
Resumo:
Gesneriaceae are represented in the New World (NW) by a major clade (c. 1000 species) currently recognized as subfamily Gesnerioideae. Radiation of this group occurred in all biomes of tropical America and was accompanied by extensive phenotypic and ecological diversification. Here we performed phylogenetic analyses using DNA sequences from three plastid loci to reconstruct the evolutionary history of Gesnerioideae and to investigate its relationship with other lineages of Gesneriaceae and Lamiales. Our molecular data confirm the inclusion of the South Pacific Coronanthereae and the Old World (OW) monotypic genus Titanotrichum in Gesnerioideae and the sister-group relationship of this subfamily to the rest of the OW Gesneriaceae. Calceolariaceae and the NW genera Peltanthera and Sanango appeared successively sister to Gesneriaceae, whereas Cubitanthus, which has been previously assigned to Gesneriaceae, is shown to be related to Linderniaceae. Based on molecular dating and biogeographical reconstruction analyses, we suggest that ancestors of Gesneriaceae originated in South America during the Late Cretaceous. Distribution of Gesneriaceae in the Palaeotropics and Australasia was inferred as resulting from two independent long-distance dispersals during the Eocene and Oligocene, respectively. In a short time span starting at 34 Mya, ancestors of Gesnerioideae colonized several Neotropical regions including the tropical Andes, Brazilian Atlantic forest, cerrado, Central America and the West Indies. Subsequent diversification within these areas occurred largely in situ and was particularly extensive in the mountainous systems of the Andes, Central America and the Brazilian Atlantic forest. Only two radiations account for 90% of the diversity of Gesneriaceae in the Brazilian Atlantic forest, whereas half of the species richness in the northern Andes and Central America originated during the last 10 Myr from a single radiation.
Resumo:
We report a new set of nine primer pairs specifically developed for amplification of Brassica plastid SSR markers. The wide utility of these markers is demonstrated for haplotype identification and detection of polymorphism in B. napus, B. nigra, B. oleracea, B. rapa and in related genera Arabidopsis, Camelina, Raphanus and Sinapis. Eleven gene regions (ndhB-rps7 spacer, rbcL-accD spacer, rpl16 intron, rps16 intron, atpB-rbcL spacer, trnE-trnT spacer, trnL intron, trnL-trnF spacer, trnM-atpE spacer, trnR-rpoC2 spacer, ycf3-psaA spacer) were sequenced from a range of Brassica and related genera for SSR detection and primer design. Other sequences were obtained from GenBank/EMBL. Eight out of nine selected SSR loci showed polymorphism when amplified using the new primers and a combined analysis detected variation within and between Brassica species, with the number of alleles detected per locus ranging from 5 (loci MF-6, MF-1) to 11 (locus MF-7). The combined SSR data were used in a neighbour-joining analysis (SMM, D (DM) distances) to group the samples based on the presence and absence of alleles. The analysis was generally able to separate plastid types into taxon-specific groups. Multi-allelic haplotypes were plotted onto the neighbour joining tree. A total number of 28 haplotypes were detected and these differentiated 22 of the 41 accessions screened from all other accessions. None of these haplotypes was shared by more than one species and some were not characteristic of their predicted type. We interpret our results with respect to taxon differentiation, hybridisation and introgression patterns relating to the 'Triangle of U'.
Resumo:
BACKGROUND AND AIMS: The genus Olea (Oleaceae) includes approx. 40 taxa of evergreen shrubs and trees classified in three subgenera, Olea, Paniculatae and Tetrapilus, the first of which has two sections (Olea and Ligustroides). Olive trees (the O. europaea complex) have been the subject of intensive research, whereas little is known about the phylogenetic relationships among the other species. To clarify the biogeographical history of this group, a molecular analysis of Olea and related genera of Oleaceae is thus necessary. METHODS: A phylogeny was built of Olea and related genera based on sequences of the nuclear ribosomal internal transcribed spacer-1 and four plastid regions. Lineage divergence and the evolution of abaxial peltate scales, the latter character linked to drought adaptation, were dated using a Bayesian method. KEY RESULTS: Olea is polyphyletic, with O. ambrensis and subgenus Tetrapilus not sharing a most recent common ancestor with the main Olea clade. Partial incongruence between nuclear and plastid phylogenetic reconstructions suggests a reticulation process in the evolution of subgenus Olea. Estimates of divergence times for major groups of Olea during the Tertiary were obtained. CONCLUSIONS: This study indicates the necessity of revising current taxonomic boundaries in Olea. The results also suggest that main lines of evolution were promoted by major Tertiary climatic shifts: (1) the split between subgenera Olea and Paniculatae appears to have taken place at the Miocene-Oligocene boundary; (2) the separation of sections Ligustroides and Olea may have occurred during the Early Miocene following the Mi-1 glaciation; and (3) the diversification within these sections (and the origin of dense abaxial indumentum in section Olea) was concomitant with the aridification of Africa in the Late Miocene.
Resumo:
Background: Arundinarieae are a large tribe of temperate woody bamboos for which phylogenetics are poorly understood because of limited taxon sampling and lack of informative characters. Aims: This study assessed phylogenetic relationships, origins and classification of Arundinarieae. Methods: DNA sequences (plastid trnL-F; nuclear ITS) were used for parsimony and Bayesian inference including 41 woody bamboo taxa. Divergence dates were estimated using a relaxed Bayesian clock. Results: Arundinarieae were monophyletic but their molecular divergence was low compared to the tropical Bambuseae. Ancestors of the Arundinarieae lineage were estimated to have diverged from the other bamboos 23 (15-30) million years ago (Mya). However, the Arundinarieae radiation occurred 10 (6-16) Mya compared to 18 (11-25) Mya for the tropical Bambuseae. Some groups could be defined within Arundinarieae, but they do not correspond to recognised subtribes such as Arundinariinae or Shibataeinae. Conclusions: Arundinarieae are a relatively ancient bambusoid lineage that underwent a rapid radiation in the late Miocene. The radiation coincides with the continental collision of the Indo-Australian and Eurasian Plates. Arundinarieae are distributed primarily in East Asia and the Himalayas to northern Southeast Asia. It is unknown whether they were present in Asia long before their radiation, but we believe recent dispersal is a more likely scenario. Keywords: Arundinarieae; Bambuseae; internal transcribed spacer (ITS); molecular clock; phylogenetics; radiation; temperate bamboos; Thamnocalaminae; trnL-F
Resumo:
Black cherry (Prunus serotina) is a tree from North America, where it is often used for economical purposes, whereas it is widespread and invasive in Europe. Plastid DNA variation was Wrst investigated in both its native and invasive ranges using microsatellite loci and sequences of three intergenic spacers (trnT-trnL, trnD-trnT and trnS-trnG). This analysis was focused on P. serotina var. serotina, with the inclusion of samples of closely related taxa. Length variation at a microsatellite locus (ccmp5) and a few sequence polymorphisms were identi- Wed among P. serotina samples. Four new primer pairs were then designed to speciWcally amplify variable regions and a combination of Wve markers was Wnally proposed for phylogeographic studies in P. serotina. These loci allow identiWcation of six chlorotypes in P. serotina var. serotina, which may be particularly useful to depict the maternal origins of European invasive populations
Resumo:
A number of recent papers have brought suggestive evidence for an active role of Chlamydiales in the establishment of the plastid. Chlamydiales define a very ancient group of obligate intracellular bacterial pathogens that multiply in vesicles within eukaryotic phagotrophic host cells such as animals, amoebae or other protists, possibly including the hypothetical phagotroph that internalized the cyanobacterial ancestor of the plastid over a billion years ago. We briefly survey the case for an active role of these ancient pathogens in plastid endosymbiosis. We argue that a good understanding of the Chlamydiales infection cycle and diversity may help to shed light on the process of metabolic integration of the evolving plastid.
Resumo:
The heat- and odour-producing genus Arum (Araceae) has interested scientists for centuries. This long-term interest has allowed a deep knowledge of some complex processes, such as the physiology and dynamics of its characteristic lure-and-trap pollination system, to be built up. However, mainly because of its large distributional range and high degree of morphological variation, species' limits and relationships are still under discussion. Today, the genus comprises 28 species subdivided into two subgenera, two sections and six subsections. In this study, the phylogeny of the genus is inferred on the basis of four plastid regions, and the evolution of several morphological characters is investigated. Our phylogenetic hypothesis is not in agreement with the current infrageneric classification of the genus and challenges the monophyly of several species. This demonstrates the need for a new infrageneric classification based on characters reflecting the evolution of this enigmatic genus. To investigate the biogeography of Arum deeply, further spatiotemporal analyses were performed, addressing the importance of the Mediterranean basin in the diversification of Arum. Our results suggest that its centre of origin was the European-Aegean region, and that major diversification happened during the last 10 Myr.
Resumo:
In this paper we included a very broad representation of grass family diversity (84% of tribes and 42% of genera). Phylogenetic inference was based on three plastid DNA regions rbcL, matK and trnL-F, using maximum parsimony and Bayesian methods. Our results resolved most of the subfamily relationships within the major clades (BEP and PACCMAD), which had previously been unclear, such as, among others the: (i) BEP and PACCMAD sister relationship, (ii) composition of clades and the sister-relationship of Ehrhartoideae and Bambusoideae + Pooideae, (iii) paraphyly of tribe Bambuseae, (iv) position of Gynerium as sister to Panicoideae, (v) phylogenetic position of Micrairoideae. With the presence of a relatively large amount of missing data, we were able to increase taxon sampling substantially in our analyses from 107 to 295 taxa. However, bootstrap support and to a lesser extent Bayesian inference posterior probabilities were generally lower in analyses involving missing data than those not including them. We produced a fully resolved phylogenetic summary tree for the grass family at subfamily level and indicated the most likely relationships of all included tribes in our analysis.
Resumo:
Twelve primers to amplify microsatellite markers from the chloroplast genome of Lolium perenne were designed and optimized using de novo sequencing and in silico sequences. With one exception, each locus was polymorphic with a range from two to nine alleles in L. perenne. The newly developed primer pairs cross-amplified in different species of Lolium and in 50 other grass species representing nine grass subfamilies.
Resumo:
The location and timing of domestication of the olive tree, a key crop in Early Mediterranean societies, remain hotly debated. Here, we unravel the history of wild olives (oleasters), and then infer the primary origins of the domesticated olive. Phylogeography and Bayesian molecular dating analyses based on plastid genome profiling of 1263 oleasters and 534 cultivated genotypes reveal three main lineages of pre-Quaternary origin. Regional hotspots of plastid diversity, species distribution modelling and macrofossils support the existence of three long-term refugia; namely the Near East (including Cyprus), the Aegean area and the Strait of Gibraltar. These ancestral wild gene pools have provided the essential foundations for cultivated olive breeding. Comparison of the geographical pattern of plastid diversity between wild and cultivated olives indicates the cradle of first domestication in the northern Levant followed by dispersals across the Mediterranean basin in parallel with the expansion of civilizations and human exchanges in this part of the world.
Resumo:
Understanding the drivers of population divergence, speciation and species persistence is of great interest to molecular ecology, especially for species-rich radiations inhabiting the world's biodiversity hotspots. The toolbox of population genomics holds great promise for addressing these key issues, especially if genomic data are analysed within a spatially and ecologically explicit context. We have studied the earliest stages of the divergence continuum in the Restionaceae, a species-rich and ecologically important plant family of the Cape Floristic Region (CFR) of South Africa, using the widespread CFR endemic Restio capensis (L.) H.P. Linder & C.R. Hardy as an example. We studied diverging populations of this morphotaxon for plastid DNA sequences and >14 400 nuclear DNA polymorphisms from Restriction site Associated DNA (RAD) sequencing and analysed the results jointly with spatial, climatic and phytogeographic data, using a Bayesian generalized linear mixed modelling (GLMM) approach. The results indicate that population divergence across the extreme environmental mosaic of the CFR is mostly driven by isolation by environment (IBE) rather than isolation by distance (IBD) for both neutral and non-neutral markers, consistent with genome hitchhiking or coupling effects during early stages of divergence. Mixed modelling of plastid DNA and single divergent outlier loci from a Bayesian genome scan confirmed the predominant role of climate and pointed to additional drivers of divergence, such as drift and ecological agents of selection captured by phytogeographic zones. Our study demonstrates the usefulness of population genomics for disentangling the effects of IBD and IBE along the divergence continuum often found in species radiations across heterogeneous ecological landscapes.
Resumo:
Metabolic engineering of plants allows the possibility of using crops for the synthesis of novel polymers having useful material properties. Strong and flexible protein-based polymers, which are based on the structure of silk and elastin have been synthesized in transgenic plants. A wide range of polyhydroxyalkanoates having properties ranging from stiff plastics to soft elastomers and glues have been synthesized in various compartments of plants, such as the cytoplasm, plastid and peroxisome. These plant biomaterials could replace, in part, the synthetic plastics, fibers and elastomers produced from petroleum, thus offering the advantage of renewability, sustainability and biodegradability.
Resumo:
Background and aims Recent studies have adopted a broad definition of Sapindaceae that includes taxa traditionally placed in Aceraceae and Hippocastanaceae, achieving monophyly but yielding a family difficult to characterize and for which no obvious morphological synapomorphy exists. This expanded circumscription was necessitated by the finding that the monotypic, temperate Asian genus Xanthoceras, historically placed in Sapindaceae tribe Harpullieae, is basal within the group. Here we seek to clarify the relationships of Xanthoceras based on phylogenetic analyses using a dataset encompassing nearly 3/4 of sapindaceous genera, comparing the results with information from morphology and biogeography, in particular with respect to the other taxa placed in Harpullieae. We then re-examine the appropriateness of maintaining the current broad, morphologically heterogeneous definition of Sapindaceae and explore the advantages of an alternative family circumscription. Methods Using 243 samples representing 104 of the 142 currently recognized genera of Sapindaceae s. lat. (including all in Harpullieae), sequence data were analyzed for nuclear (ITS) and plastid (matK, rpoB, trnD-trnT, trnK-matK, trnL-trnF and trnS-trnG) markers, adopting the methodology of a recent family-wide study, performing single-gene and total evidence analyses based on maximum likelihood (ML) and maximum parsimony (MP) criteria, and applying heuristic searches developed for large datasets, viz, a new strategy implemented in RAxML (for ML) and the parsimony ratchet (for MP). Bootstrap analyses were performed for each method to test for congruence between markers. Key results Our findings support earlier suggestions that Harpullieae are polyphyletic: Xanthoceras is confirmed as sister to all other sampled taxa of Sapindaceae s. lat.; the remaining members belong to three other clades within Sapindaceae s. lat., two of which correspond respectively to the groups traditionally treated as Aceraceae and Hippocastanaceae, together forming a clade sister to the largely tropical Sapindaceae s. str., which is monophyletic and morphologically coherent provided Xanthoceras is excluded. Conclusion To overcome the difficulties of a broadly circumscribed Sapindaceae, we resurrect the historically recognized temperate families Aceraceae and Hippocastanaceae, and describe a new family, Xanthoceraceae, thus adopting a monophyletic and easily characterized circumscription of Sapindaceae nearly identical to that used for over a century.