127 resultados para plant bacterium interaction

em Université de Lausanne, Switzerland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pseudomonas fluorescens are rhizobacteria known for their biocontrol properties. Several antimicrobial functions are crucial for this process, and the experiments described here investigate the modulation of their expression during the plant-bacterium interaction. The role of a LuxR family regulator in interkingdom signaling has been investigated using genome-scale transcriptome analysis, gene promoter studies in vivo and in vitro, biocontrol assays, and response to plant compounds. PsoR, a LuxR solo or orphan regulator of P. fluorescens, was identified. PsoR is solubilized and activates a lux-box-containing promoter only in the presence of macerated plants, suggesting the presence of a plant molecule(s) that most likely binds to PsoR. Gene expression profiles revealed that genes involved in the inhibition of plant pathogens were affected by PsoR, including a chitinase gene, iron metabolism genes, and biosynthetic genes of antifungal compounds. 2,4-Diacetylphloroglucinol production is PsoR dependent both in vitro and in vivo. psoR mutants were significantly reduced for their ability to protect wheat plants from root rot, and damping-off caused by Pythium ultimum infection. PsoR most likely senses a molecule(s) in the plant and modulates expression of genes that have a role in biocontrol. PsoR and related proteins form a subfamily of LuxR family regulators in plant-associated bacteria.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Environmental gradients have been postulated to generate patterns of diversity and diet specialization, in which more stable environments, such as tropical regions, should promote higher diversity and specialization. Using field sampling and phylogenetic analyses of butterfly fauna over an entire alpine region, we show that butterfly specialization (measured as the mean phylogenetic distance between utilized host plants) decreases at higher elevations, alongside a decreasing gradient of plant diversity. Consistent with current hypotheses on the relationship between biodiversity and the strength of species interactions, we experimentally show that a higher level of generalization at high elevations is associated with lower levels of plant resistance: across 16 pairs of plant species, low-elevation plants were more resistant vis-à-vis their congeneric alpine relatives. Thus, the links between diversity, herbivore diet specialization, and plant resistance along an elevation gradient suggest a causal relationship analogous to that hypothesized along latitudinal gradients.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

1. Accumulating evidence indicates that plant resistance against above-ground herbivores can be affected by the presence of arbuscular mycorrhizal fungi (AMF) in association with the host plant. Little is known, however, about how AMF composition can influence herbivore choice to feed on a particular plant. 2. Unravelling the preference-performance hypothesis in a multitrophic context is needed to expand our knowledge of complex multitrophic interactions in natural systems. If given mycorrhizal fungal genotypes increase attractiveness for a herbivore (reduced plant resistance), then the benefits of increased unpalatability provided by the mycorrhizal fungi (increased plant resistance) might be outweighed by the increased herbivore recruitment. 3. This was addressed by designing three experiments to test the effects of different AMF genotypes, inoculated either alone or in combination, to measure intraspecific AMF effects on plant resistance and insect herbivore preference. Using strawberry (Fragaria vesca L.) plants that were colonised by eight different combinations of Rhizophagus irregularis isolates, we measured effects on plant growth, insect growth and survival, as well as feeding preferences of a generalist herbivore caterpillar (Spodoptera littoralis Boisduval). 4. Overall, it was found that: (i) AMF influenced plant resistance in an AMF genotype-specific manner; (ii) some AMF inoculations decreased insect performance; (iii) insects preferentially chose to feed more on leaves originating from non-mycorrhizal plants; but also that (iv) in a whole plant bioassay, insects preferentially chose the biggest plant, regardless of their mycorrhizal status. 5. Therefore, AMF-mediated trade-offs between growth and resistance against herbivores have been shown. Such trade-offs, particularly driven by plant attractiveness to herbivores, buffer the positive effects of the mycorrhizal symbiosis on enhanced plant growth.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ecological interactions are complex networks, but have typically been studied in a pairwise fashion. Examining how third-party species can modify the outcome of pairwise interactions may allow us to better predict their outcomes in realistic systems. For instance, arbuscular mycorrhizal fungi (AMF) can affect plant interactions with other organisms, including below-ground herbivores, but the mechanisms underlying these effects remain unclear. Here, we use a comparative, phylogenetically controlled approach to test the relative importance of mycorrhizal colonization and plant chemical defences (cardenolides) in predicting plant survival and the abundance of a generalist below-ground herbivore across 14 species of milkweeds (Asclepias spp.). Plants were inoculated with a mixture of four generalist AMF species or left uninoculated. After 1month, larvae of Bradysia sp. (Diptera: Sciaridae), a generalist below-ground herbivore, colonized plant roots. We performed phylogenetically controlled analyses to assess the influence of AMF colonization and toxic cardenolides on plant growth, mortality and infestation by fungus gnats. Overall, plants inoculated with AMF exhibited greater survival than did uninoculated plants. Additionally, surviving inoculated plants had lower numbers of larvae in their roots and fewer non-AM fungi than surviving uninoculated plants. In phylogenetic controlled regressions, gnat density in roots was better predicted by the extent of root colonized by AMF than by root cardenolide concentration. Taken as a whole, AMF modify the effect of below-ground herbivores on plants in a species-specific manner, independent of changes in chemical defence. This study adds to the growing body of literature demonstrating that mycorrhizal fungi may improve plant fitness by conferring protection against antagonists, rather than growth benefits. In addition, we advocate using comparative analyses to disentangle the roles of shared history and ecology in shaping trait expression and to better predict the outcomes of complex multitrophic interactions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have investigated the impacts of 63 different low-molecular-weight compounds, most of them plant derived, on the in vitro expression of two antifungal biosynthetic genes by the plant-protecting rhizobacterium Pseudomonas fluorescens CHA0. The majority of the compounds tested affected the expression of one or both antifungal genes. This suggests that biocontrol activity in plant-beneficial pseudomonads is modulated by plant-bacterium signaling.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Studies aiming at explaining specialization along latitudinal gradients of plant-herbivore interactions have, to date, yielded inconclusive results. Here we propose the use of steep altitudinal gradients for dissecting factors driving evolution of polyphagy in insect herbivores. First, we test whether colonization of high elevation environment favours increased niche-breadth in two disparate insect groups - the wood-boring beetles and the pollinator group of bees - and show increased polyphagy at higher altitudes in both groups. We then assess classic assumptions transferred from the 'latitude-niche-breadth hypothesis', particularly the increase in environmental variability at high, compared to low, altitude. Finally, we discuss alternative mechanisms shaping the observed pattern of increased polyphagy in altitude, including variation in plant quality and predator pressure at different altitudes. We thus suggest evidence for the 'altitude niche-breadth hypothesis', in which both abiotic and biotic conditions, including increased variability and an increase of the potential feeding niche-breadth, promote evolution for increased insect polyphagy in altitude.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Based on conclusions drawn from general climatic impact assessment in mountain regions, the review synthesizes results relevant to the European Alps published mainly from 1994 onward in the fields of population genetics, ecophysiology, phenology, phytogeography, modeling, paleoecology and vegetation dynamics. Other important factors of global change interacting synergistically with climatic factors are also mentioned, such as atmospheric CO2 concentration, eutrophication, ozone or changes in land-use. Topics addressed are general species distribution and populations (persistence, acclimation, genetic variability, dispersal, fragmentation, plant/animal interaction, species richness, conservation), potential response of vegetation (ecotonal shift - area, physiography - changes in the composition, structural changes), phenology, growth and productivity, and landscape. In conclusion, the European Alps appear to have a natural inertia and thus to tolerate an increase of 1-2 K of mean air temperature as far as plant species and ecosystems are concerned in general. However, the impact of land-use is very likely to negate this buffer in many areas. For a change of the order of 3 K or more, profound changes may be expected.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Transcript patterns elicited in response to attack reveal, at the molecular level, how plants respond to aggressors. These patterns are fashioned both by inflicted physical damage as well as by biological components displayed or released by the attacker. Different types of attacking organisms might therefore be expected to elicit different transcription programs in the host. Using a large-scale DNA microarray, we characterized gene expression in damaged as well as in distal Arabidopsis thaliana leaves in response to the specialist insect, Pieris rapae. More than 100 insect-responsive genes potentially involved in defense were identified, including genes involved in pathogenesis, indole glucosinolate metabolism, detoxification and cell survival, and signal transduction. Of these 114 genes, 111 were induced in Pieris feeding, and only three were repressed. Expression patterns in distal leaves were markedly similar to those of local leaves. Analysis of wild-type and jasmonate mutant plants, coupled with jasmonate treatment, showed that between 67 and 84% of Pieris-regulated gene expression was controlled, totally or in part, by the jasmonate pathway. This was correlated with increased larval performance on the coronatine insensitive1 glabrous1 (coi1-1 gl1) mutant. Independent mutations in COI1 and GL1 led to a faster larval weight gain, but the gl1 mutation had relatively little effect on the expression of the insect-responsive genes examined. Finally, we compared transcript patterns in Arabidopis in response to larvae of the specialist P. rapae and to a generalist insect, Spodoptera littoralis. Surprisingly, given the complex nature of insect salivary components and reported differences between species, almost identical transcript profiles were observed. This study also provides a robustly characterized gene set for the further investigation of plant-insect interaction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Bumblebees represent an active pollinator group in mountain regions and assure the pollination of many different plant species from low to high elevations. Plant-pollinator interactions are mediated by functional traits. Shift in bumblebee functional structure under climate change may impact plant-pollinator interactions in mountains. Here, we estimated bumblebee upward shift in elevation, community turnover, and change in functional structure under climate change. Method: We sampled bumblebee species at 149 sites along the elevation gradient. We used stacked species distribution models (S-SDMs) forecasted under three climate change scenarios (A2, A1B, RCP3PD) to model the potential distribution of the Bombus species. Furthermore, we used species proboscis length measurements to assess the functional change in bumblebee assemblages along the elevation gradient. Results: We found species-specific response of bumblebee species to climate change. Species differed in their predicted rate of range contraction and expansion. Losers were mainly species currently restricted to high elevation. Under the most severe climate change scenarios (A2), we found a homogenization of proboscis length structure in bumblebee communities along the elevation gradient through the upward colonization of high elevation by species with longer proboscides. Conclusions: Here, we show that in addition to causing the shift in the distribution of bumblebee species, climate change may impact the functional structure of communities. The colonization of high elevation areas by bumblebee species with long proboscides may modify the structure of plant-pollination interaction networks by increasing the diversity of pollination services at high elevation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mating with more than one pollen donor, or polyandry, is common in land plants. In flowering plants, polyandry occurs when the pollen from different potential sires is distributed among the fruits of a single individual, or when pollen from more than one donor is deposited on the same stigma. Because polyandry typically leads to multiple paternity among or within fruits, it can be indirectly inferred on the basis of paternity analysis using molecular markers. A review of the literature indicates that polyandry is probably ubiquitous in plants except those that habitually self-fertilize, or that disperse their pollen in pollen packages, such as polyads or pollinia. Multiple mating may increase plants' female component by alleviating pollen limitation or by promoting competition among pollen grains from different potential sires. Accordingly, a number of traits have evolved that should promote polyandry at the flower level from the female's point of view, e.g. the prolongation of stigma receptivity or increases in stigma size. However, many floral traits, such as attractiveness, the physical manipulation of pollinators and pollen-dispensing mechanisms that lead to polyandrous pollination, have probably evolved in response to selection to promote male siring success in general, so that polyandry might often best be seen as a by-product of selection to enhance outcross siring success. In this sense, polyandry in plants is similar to geitonogamy (selfing caused by pollen transfer among flowers of the same plant), because both polyandry and geitonogamy probably result from selection to promote outcross siring success, although geitonogamy is almost always deleterious while polyandry in plants will seldom be so.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The hypothesis that constitutive and inducible plant resistance against herbivores should trade-off because they use the same resources and impose costs to plant fitness has been postulated for a long time. Negative correlations between modes of deployment of resistance and defences have been observed across and within species in common garden experiments. It was therefore tested whether that pattern of resistance across genotypes follows a similar variation in patterns of gene expression and chemical defence production. Using the genetically tractable model Arabidopsis thaliana and different modes of induction, including the generalist herbivore Spodoptera littoralis, the specialist herbivore Pieris brassicae, and jasmonate application, constitutive and inducibility of resistance was measured across seven A. thaliana accessions that were previously selected based on constitutive levels of defence gene expression. According to theory, it was found that modes of resistance traded-off among accessions, particularly against S. littoralis, in which accessions investing in high constitutive resistance did not increase it substantially after attack and vice-versa. Accordingly, the average expression of eight genes involved in glucosinolate production negatively predicted larval growth across the seven accessions. Glucosinolate production and genes related to defence induction on healthy and herbivore-damaged plants were measured next. Surprisingly, only a partial correlation between glucosinolate production, gene expression, and the herbivore resistance results was found. These results suggest that the defence outcome of plants against herbivores goes beyond individual molecules or genes but stands on a complex network of interactions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report the complete genome sequence of the free-living bacterium Pseudomonas protegens (formerly Pseudomonas fluorescens) CHA0, a model organism used in plant-microbe interactions, biological control of phytopathogens, and bacterial genetics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Les bactéries du genre Pseudomonas ont la capacité étonnante de s'adapter à différents habitats et d'y survivre, ce qui leur a permis de conquérir un large éventail de niches écologiques et d'interagir avec différents organismes hôte. Les espèces du groupe Pseudomonas fluorescens peuvent être facilement isolées de la rhizosphère et sont communément connues comme des Pseudomonas bénéfiques pour les plantes. Elles sont capables d'induire la résistance systémique des plantes, d'induire leur croissance et de contrer des phytopathogènes du sol. Un sous-groupe de ces Pseudomonas a de plus développé la capacité d'infecter et de tuer certaines espèces d'insectes. Approfondir les connaissances sur l'interaction de ces bactéries avec les insectes pourraient conduire au développement de nouveaux biopesticides pour la protection des cultures. Le but de cette thèse est donc de mieux comprendre la base moléculaire, l'évolution et la régulation de la pathogénicité des Pseudomonas plante-bénéfiques envers les insectes. Plus spécifiquement, ce travail a été orienté sur l'étude de la production de la toxine insecticide appelée Fit et sur l'indentification d'autres facteurs de virulence participant à la toxicité de la bactérie envers les insectes. Dans la première partie de ce travail, la régulation de la production de la toxine Fit a été évaluée par microscopie à épifluorescence en utilisant des souches rapportrices de Pseudomonas protegens CHA0 qui expriment la toxine insecticide fusionnée à une protéine fluorescente rouge, au site natif du gène de la toxine. Celle-ci a été détectée uniquement dans l'hémolymphe des insectes et pas sur les racines des plantes, ni dans les milieux de laboratoire standards, indiquant une production dépendante de l'hôte. L'activation de la production de la toxine est contrôlée par trois protéines régulatrices dont l'histidine kinase FitF, essentielle pour un contrôle précis de l'expression et possédant un domaine "senseur" similaire à celui de la kinase DctB qui régule l'absorption de carbone chez les Protéobactéries. Il est donc probable que, durant l'évolution de FitF, un réarrangement de ce domaine "senseur" largement répandu ait contribué à une production hôte-spécifique de la toxine. Les résultats de cette étude suggèrent aussi que l'expression de la toxine Fit est plutôt réprimée en présence de composés dérivés des plantes qu'induite par la perception d'un signal d'insecte spécifique. Dans la deuxième partie de ce travail, des souches mutantes ciblant des facteurs de virulence importants identifiés dans des pathogènes connus ont été générées, dans le but d'identifier ceux avec une virulence envers les insectes atténuée. Les résultats ont suggéré que l'antigène O du lipopolysaccharide (LPS) et le système régulateur à deux composantes PhoP/PhoQ contribuent significativement à la virulence de P. protegens CHA0. La base génétique de la biosynthèse de l'antigène O dans les Pseudomonas plante-bénéfiques et avec une activité insecticide a été élucidée et a révélé des différences considérables entre les lignées suite à des pertes de gènes ou des acquisitions de gènes par transfert horizontal durant l'évolution de certaines souches. Les chaînes latérales du LPS ont été montrées comme vitales pour une infection des insectes réussie par la souche CHA0, après ingestion ou injection. Les Pseudomonas plante-bénéfiques, avec une activité insecticide sont naturellement résistants à la polymyxine B, un peptide antimicrobien modèle. La protection contre ce composé antimicrobien particulier dépend de la présence de l'antigène O et de la modification du lipide A, une partie du LPS, avec du 4-aminoarabinose. Comme les peptides antimicrobiens cationiques jouent un rôle important dans le système immunitaire des insectes, l'antigène O pourrait être important chez les Pseudomonas insecticides pour surmonter les mécanismes de défense de l'hôte. Le système PhoP/PhoQ, connu pour contrôler les modifications du lipide A chez plusieurs bactéries pathogènes, a été identifié chez Pseudomonas chlororaphis PCL1391 et P. protegens CHA0. Pour l'instant, il n'y a pas d'évidence que des modifications du lipide A contribuent à la pathogénicité de cette bactérie envers les insectes. Cependant, le senseur-kinase PhoQ est requis pour une virulence optimale de la souche CHA0, ce qui suggère qu'il régule aussi l'expression des facteurs de virulence de cette bactérie. Les découvertes de cette thèse démontrent que certains Pseudomonas associés aux plantes sont de véritables pathogènes d'insectes et donnent quelques indices sur l'évolution de ces microbes pour survivre dans l'insecte-hôte et éventuellement le tuer. Les résultats suggèrent également qu'une recherche plus approfondie est nécessaire pour comprendre comment ces bactéries sont capables de contourner ou surmonter la réponse immunitaire de l'hôte et de briser les barrières physiques pour envahir l'insecte lors d'une infection orale. Pour cela, les futures études ne devraient pas uniquement se concentrer sur le côté bactérien de l'interaction hôte-microbe, mais aussi étudier l'infection du point de vue de l'hôte. Les connaissances gagnées sur la pathogénicité envers les insectes des Pseudomonas plante-bénéfiques donnent un espoir pour une future application en agriculture, pour protéger les plantes, non seulement contre les maladies, mais aussi contre les insectes ravageurs. -- Pseudomonas bacteria have the astonishing ability to survive within and adapt to different habitats, which has allowed them to conquer a wide range of ecological niches and to interact with different host organisms. Species of the Pseudomonas fluorescens group can readily be isolated from plant roots and are commonly known as plant-beneficial pseudomonads. They are capable of promoting plant growth, inducing systemic resistance in the plant host and antagonizing soil-borne phytopathogens. A defined subgroup of these pseudomonads evolved in addition the ability to infect and kill certain insect species. Profound knowledge about the interaction of these particular bacteria with insects could lead to the development of novel biopesticides for crop protection. This thesis thus aimed at a better understanding of the molecular basis, evolution and regulation of insect pathogenicity in plant-beneficial pseudomonads. More specifically, it was outlined to investigate the production of an insecticidal toxin termed Fit and to identify additional factors contributing to the entomopathogenicity of the bacteria. In the first part of this work, the regulation of Fit toxin production was probed by epifluorescence microscopy using reporter strains of Pseudomonas protegens CHAO that express a fusion between the insecticidal toxin and a red fluorescent protein in place of the native toxin gene. The bacterium was found to express its insecticidal toxin only in insect hemolymph but not on plant roots or in common laboratory media. The host-dependent activation of Fit toxin production is controlled by three local regulatory proteins. The histidine kinase of this regulatory system, FitF, is essential for the tight control of toxin expression and shares a sensing domain with DctB, a sensor kinase regulating carbon uptake in Proteobacteria. It is therefore likely that shuffling of a ubiquitous sensor domain during the evolution of FitF contributed to host- specific production of the Fit toxin. Findings of this study additionally suggest that host-specific expression of the Fit toxin is mainly achieved by repression in the presence of plant-derived compounds rather than by induction upon perceiving an insect-specific signal molecule. In the second part of this thesis, mutant strains were generated that lack factors previously shown to be important for virulence in prominent pathogens. A screening for attenuation in insect virulence suggested that lipopolysaccharide (LPS) O-antigen and the PhoP-PhoQ two-component regulatory system significantly contribute to virulence of P. protegens CHAO. The genetic basis of O-antigen biosynthesis in plant-beneficial pseudomonads displaying insect pathogenicity was elucidated and revealed extensive differences between lineages due to reduction and horizontal acquisition of gene clusters during the evolution of several strains. Specific 0 side chains of LPS were found to be vital for strain CHAO to successfully infect insects by ingestion or upon injection. Insecticidal pseudomonads with plant-beneficial properties were observed to be naturally resistant to polymyxin B, a model antimicrobial peptide. Protection against this particular antimicrobial compound was dependent on the presence of O-antigen and modification of the lipid A portion of LPS with 4-aminoarabinose. Since cationic antimicrobial peptides play a major role in the immune system of insects, O-antigenic polysaccharides could be important for insecticidal pseudomonads to overcome host defense mechanisms. The PhoP-PhoQ system, which is well-known to control lipid A modifications in several pathogenic bacteria, was identified in Pseudomonas chlororaphis PCL1391 and P. protegens CHAO. No evidence was found so far that lipid A modifications contribute to insect pathogenicity in this bacterium. However, the sensor kinase PhoQ was required for full virulence of strain CHAO suggesting that it additionally regulates the expression of virulence factors in this bacterium. The findings of this thesis demonstrate that certain plant-associated pseudomonads are true insect pathogens and give some insights into how these microbes evolved to survive within and eventually kill the insect host. Results however also point out that more in-depth research is needed to know how exactly these fascinating bacteria manage to bypass or overcome host immune responses and to breach physical barriers to invade insects upon oral infection. To achieve this, future studies should not only focus on the bacterial side of the microbe-host interactions but also investigate the infection from a host-oriented view. The knowledge gained about the entomopathogenicity of plant-beneficial pseudomonads gives hope for their future application in agriculture to protect plants not only against plant diseases but also against insect pests.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The application of microbial biocontrol agents for the control of fungal plant diseases and plant insect pests is a promising approach in the development of environmentally benign pest management strategies. The ideal biocontrol organism would be a bacterium or a fungus with activity against both, insect pests and fungal pathogens. Here we demonstrate the oral insecticidal activity of the root colonizing Pseudomonas fluorescens CHA0, which is so far known for its capacity to efficiently suppress fungal plant pathogens. Feeding assays with CHA0-sprayed leaves showed that this strain displays oral insecticidal activity and is able to efficiently kill larvae of three important insect pests. We further show data indicating that the Fit insect toxin produced by CHA0 and also metabolites controlled by the global regulator GacA contribute to oral insect toxicity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AimWe take a comparative phylogeographical approach to assess whether three species involved in a specialized oil-rewarding pollination system (i.e. Lysimachia vulgaris and two oil-collecting bees within the genus Macropis) show congruent phylogeographical trajectories during post-glacial colonization processes. Our working hypothesis is that within specialized mutualistic interactions, where each species relies on the co-occurrence of the other for survival and/or reproduction, partners are expected to show congruent evolutionary trajectories, because they are likely to have followed parallel migration routes and to have shared glacial refugia. LocationWestern Palaearctic. MethodsOur analysis relies on the extensive sampling of 104 Western Palaearctic populations (totalling 434, 159 and 74 specimens of Lysimachiavulgaris, Macropiseuropaea and Macropisfulvipes, respectively), genotyped with amplified fragment length polymorphism. Based on this, we evaluated the regional genetic diversity (Shannon diversity and allele rarity index) and genetic structure (assessed using structure, population networks, isolation-by-distance and spatial autocorrelation metrics) of each species. Finally, we compared the general phylogeographical patterns obtained. ResultsContrary to our expectations, the analyses revealed phylogeographical signals suggesting that the investigated organisms demonstrate independent post-glacial trajectories as well as distinct contemporaneous demographic parameters, despite their mutualistic interaction. Main conclusionsThe mutualistic partners investigated here are likely to be experiencing distinct and independent evolutionary dynamics because of their contrasting life-history traits (e.g. dispersal abilities), as well as distinct hubs and migration routes. Such conditions would prevent and/or erase any signature of co-structuring of lineages in space and time. As a result, the lack of phylogeographical congruence driven by differences in life-history traits might have arisen irrespective of the three species having shared similar Pleistocene glacial refugia.