2 resultados para piezo
em Université de Lausanne, Switzerland
Resumo:
There has been a long standing desire to produce thick (up to 500 nm) cryo-sections of fully hydrated cells and tissue for high-resolution analysis in their natural state by cryo-transmission electron microscopy. Here, we present a method that can successfully produce sections (lamellas in FIB-SEM terminology) of fully hydrated, unstained cells from high-pressure frozen samples by focused ion beam (FIB) milling. The samples are therefore placed in thin copper tubes and vitrified by high-pressure freezing. For transfer, handling and subsequent milling, the tubes are placed in a novel connective device (ferrule) that protects the sample from devitrification and contamination and passes through all operation steps. A piezo driven sample positioning stage (cryo-nano-bench, CNB) with three degrees of freedom was additionally developed to enable accurate milling of frozen-hydrated lamellas. With the CNB, high-pressure frozen samples can be milled to produce either thin lamellas (<100 nm), for direct imaging by high-resolution cryo-TEM or thicker lamellas (300-500 nm) for cryo-electron tomography. The sample remains vitreous throughout the process by using the presented tools and methods. The results are an important step towards investigating larger cells and even tissue in there natural state which in the end will enable us to gain better insights into cellular processes.
Resumo:
STUDY OBJECTIVES: Traditionally, sleep studies in mammals are performed using electroencephalogram/electromyogram (EEG/EMG) recordings to determine sleep-wake state. In laboratory animals, this requires surgery and recovery time and causes discomfort to the animal. In this study, we evaluated the performance of an alternative, noninvasive approach utilizing piezoelectric films to determine sleep and wakefulness in mice by simultaneous EEG/EMG recordings. The piezoelectric films detect the animal's movements with high sensitivity and the regularity of the piezo output signal, related to the regular breathing movements characteristic of sleep, serves to automatically determine sleep. Although the system is commercially available (Signal Solutions LLC, Lexington, KY), this is the first statistical validation of various aspects of sleep. DESIGN: EEG/EMG and piezo signals were recorded simultaneously during 48 h. SETTING: Mouse sleep laboratory. PARTICIPANTS: Nine male and nine female CFW outbred mice. INTERVENTIONS: EEG/EMG surgery. MEASUREMENTS AND RESULTS: The results showed a high correspondence between EEG/EMG-determined and piezo-determined total sleep time and the distribution of sleep over a 48-h baseline recording with 18 mice. Moreover, the piezo system was capable of assessing sleep quality (i.e., sleep consolidation) and interesting observations at transitions to and from rapid eye movement sleep were made that could be exploited in the future to also distinguish the two sleep states. CONCLUSIONS: The piezo system proved to be a reliable alternative to electroencephalogram/electromyogram recording in the mouse and will be useful for first-pass, large-scale sleep screens for genetic or pharmacological studies. CITATION: Mang GM, Nicod J, Emmenegger Y, Donohue KD, O'Hara BF, Franken P. Evaluation of a piezoelectric system as an alternative to electroencephalogram/electromyogram recordings in mouse sleep studies.