2 resultados para phytochelatins synthase gene

em Université de Lausanne, Switzerland


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Glycogen synthase 2 (Gys-2) is the ratelimiting enzyme in the storage of glycogen in liver and adipose tissue, yet little is known about regulation of Gys-2 transcription. The peroxisome proliferator-activated receptors (PPARs) are transcription factors involved in the regulation of lipid and glucose metabolism and might be hypothesized to govern glycogen synthesis as well. Here, we show that Gys-2 is a direct target gene of PPARalpha, PPARbeta/delta and PPARgamma. Expression of Gys-2 is significantly reduced in adipose tissue of PPARalpha-/-, PPARbeta/delta-/- and PPARgamma+/- mice. Furthermore, synthetic PPARbeta/delta, and gamma agonists markedly up-regulate Gys-2 mRNA and protein expression in mouse 3T3-L1 adipocytes. In liver, PPARalpha deletion leads to decreased glycogen levels in the refed state, which is paralleled by decreased expression of Gys-2 in fasted and refed state. Two putative PPAR response elements (PPREs) were identified in the mouse Gys-2 gene: one in the upstream promoter (DR-1prom) and one in intron 1 (DR-1int). It is shown that DR-1int is the response element for PPARs, while DR-1prom is the response element for Hepatic Nuclear Factor 4 alpha (HNF4alpha). In adipose tissue, which does not express HNF4alpha, DR-1prom is occupied by PPARbeta/delta and PPARgamma, yet binding does not translate into transcriptional activation of Gys-2. Overall, we conclude that mouse Gys-2 is a novel PPAR target gene and that transactivation by PPARs and HNF4alpha is mediated by two distinct response elements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Insulin resistance and arterial hypertension are related, but the underlying mechanism is unknown. Endothelial nitric oxide synthase (eNOS) is expressed in skeletal muscle, where it may govern metabolic processes, and in the vascular endothelium, where it regulates arterial pressure. METHODS AND RESULTS: To study the role of eNOS in the control of the metabolic action of insulin, we assessed insulin sensitivity in conscious mice with disruption of the gene encoding for eNOS. eNOS(-/-) mice were hypertensive and had fasting hyperinsulinemia, hyperlipidemia, and a 40% lower insulin-stimulated glucose uptake than control mice. Insulin resistance in eNOS(-/-) mice was related specifically to impaired NO synthesis, because in equally hypertensive 1-kidney/1-clip mice (a model of renovascular hypertension), insulin-stimulated glucose uptake was normal. CONCLUSIONS: These results indicate that eNOS is important for the control not only of arterial pressure but also of glucose and lipid homeostasis. A single gene defect, eNOS deficiency, may represent the link between metabolic and cardiovascular disease.