220 resultados para physical endurance

em Université de Lausanne, Switzerland


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Anabolic androgenic steroids (AAS) are doping agents that are mostly used for improvement of strength and muscle hypertrophy. In some sports, athletes reported that the intake of AAS is associated with a better recovery, a higher training load capacity and therefore an increase in physical and mental performances. The purpose of this study was to evaluate, the effect of multiple doses of AAS on different physiological parameters that could indirectly relate the physical state of athletes during a hard endurance training program. In a double blind settings, three groups (n = 9, 8 and 8) were orally administered placebo, testosterone undecanoate or 19-norandrostenedione, 12 times during 1 month. Serum biomarkers (creatine kinase, ASAT and urea), serum hormone profiles (testosterone, cortisol and LH) and urinary catecholamines (noradrenalin, adrenalin and dopamine) were evaluated during the treatment. Running performance was assessed before and after the intervention phase by means of a standardized treadmill test. None of the measured biochemical variables showed significant impact of AAS on physical stress level. Data from exercise testing on submaximal and maximal level did not reveal any performance differences between the three groups or their response to the treatment. In the present study, no effect of multiple oral doses of AAS on endurance performance or bioserum recovery markers was found.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Endurance training improves exercise performance and insulin sensitivity, and these effects may be in part mediated by an enhanced fat oxidation. Since n-3 and n-9 unsaturated fatty acids may also increase fat oxidation, we hypothesised that a diet enriched in these fatty acids may enhance the effects of endurance training on exercise performance, insulin sensitivity and fat oxidation. To assess this hypothesis, sixteen normal-weight sedentary male subjects were randomly assigned to an isoenergetic diet enriched with fish and olive oils (unsaturated fatty acid group (UFA): 52 % carbohydrates, 34 % fat (12 % SFA, 12 % MUFA, 5 % PUFA), 14 % protein), or a control diet (control group (CON): 62 % carbohydrates, 24 % fat (12 % SFA, 6 % MUFA, 2 % PUFA), 14 % protein) and underwent a 10 d gradual endurance training protocol. Exercise performance was evaluated by measuring VO2max and the time to exhaustion during a cycling exercise at 80 % VO2max; glucose homeostasis was assessed after ingestion of a test meal. Fat oxidation was assessed by indirect calorimetry at rest and during an exercise at 50 % VO2max. Training significantly increased time to exhaustion, but not VO2max, and lowered incremental insulin area under the curve after the test meal, indicating improved insulin sensitivity. Those effects were, however, of similar magnitude in UFA and CON. Fat oxidation tended to increase in UFA, but not in CON. This difference was, however, not significant. It is concluded that a diet enriched with fish- and olive oil does not substantially enhance the effects of a short-term endurance training protocol in healthy young subjects.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Résumé Il a été démontré que l'exercice physique modifiait le contrôle de la thermorégulation cutané, ce qui se manifeste par une augmentation de la perfusion de la microcirculation de la peau. Pour une même augmentation de température, ce phénomène est plus important chez les sportifs d'endurance que chez les sujets sédentaires. Dans cette étude, nous posons l'hypothèse qu'une composante de cette adaptation peut provenir d'une plus haute capacité des vaisseaux sanguins à répondre à un stimulus vasodilatateur. Pour la tester, nous avons recruté des hommes sains, non fumeurs, soit entraînés (surtout sport d'endurance) ou sédentaires que nous avons partagé en deux classes d'âges (18-35 ans [jeunes] et >50 ans[âgés]). Le flux sanguin cutané était mesuré par un laser-Doppler au niveau de la peau de l'avant-bras. Nous avons alors mesuré la vasodilatation obtenue par les stimuli suivant : Iontophorèse à l'acétylcholine (ACh, un vasodilatateur dépendant de l'endothélium), iontophorèse au nitroprussiate de sodium (SNP, un donneur d'oxyde nitrique) et par libération d'une interruption momentanée du flux artériel huméral (hyperémie réactive). Chez les sujets entraînés, l'effet de l'hyperémie réactive et de l'ACh n'ont pas montré de différence. Par contre, l'augmentation de la perfusion, suivant la iontophorèse de SNP, exprimé en unité de perfusion (PU), était plus importante chez les sujets entraînés que chez les sujets sédentaires (jeunes: 398±54 vs 350±87, p<0.05; âgés: 339±72 vs 307±66, p<0.05). Pour conclure, l'entraînement d'endurance augmente l'effet vasodilatateur de l'oxyde nitrique de la microcirculation cutanée humaine, au moins au niveau de la peau de l'avant-bras. Ces observations ont un intérêt physiologique considérable au vu des résultats d'études récentes qui montrent que le NO sert d'intermédiaire dans la vasodilatation cutanée produite par un stress thermique. Donc, l'augmentation de la bioactivité du NO dans la microcirculation cutanée pourrait être un des mécanismes par lequel l'entraînement physique modifierait le contrôle de la thermorégulation du flux sanguin cutané. Abstract Endurance training modifies the thermoregulatory control of skin blood flow, as manifested by a greater augmentation of skin perfusion for the same increase in core temperature in athletes, in comparison with se-dentary subjects. In this study, we tested the hypothesis that a component of this adaptation might reside in a higher ability of cutaneous blood vessels to respond to vasodilatory stimuli. We recruited healthy nonsmoking males, either endurance trained or sedentary, in two different age ranges (18-35 y and >50 y). Skin blood flow was measured in the forearm skin, using a laser Doppler imager, allowing to record the vasodilatory responses to the following stimuli: iontophoresis of acetylcholine (an endothelium-dependent vasodilator), iontophoresis of sodium nitroprusside (a nitric oxide donor), and release of a temporary interruption of arterial inflow (reactive hyperemia). There was no effect of training on reactive hyperemia or the response to acetylcholine. In contrast, the increase in perfusion following the iontophoresis of sodium nitroprusside, ex-pressed in perfusion units, was larger in trained than in sedentary subjects (younger: 398±54 vs 350±87, p<0.05; older 339±72 vs 307±66, p<0.05). In conclusion, endurance training enhances the vasodilatory effects of nitric oxide in the human dermal microcirculation, at least in forearm skin. These observations have considerable physiologic interest in view of recent data indicating that nitric oxide mediates in part the cutaneous vasodilation induced by heat stress in humans. Therefore, the augmentation of nitric oxide bioactivity in the dermal microcirculation might be one mechanism whereby endurance training modifies the thermoregulatory control of skin blood flow.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

OBJECTIVES: In the absence of a gold standard, the assessment of physical activity in children remains difficult. To record physical activity with a pedometer and to examine to what extent it is correlated with VO2max. METHODS: Survey on physical activity and fitness; 233 Swiss adolescents aged 11 to 15 carried a pedometer (Pedoboy) during seven consecutive days. VO2max was estimated through an endurance shuttle run test. RESULTS: The physical activity recorded by the pedometer did not vary from one day to the other (p > 0.05). The physical activity was higher among boys than among girls (p < 0.001) and higher among younger adolescents (6th versus 8th grade; p < 0.001). The correlation between physical activity and estimated VO2max was 0.30 (p < 0.01). CONCLUSIONS: The use of a pedometer to assess physical activity over one entire week is feasible among adolescents. The record provided by the pedometer gives an objective measure of the usual physical activity and, as such, is relatively well correlated with aerobic capacity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Alcohol (ethanol) is consumed on a daily basis by a large fraction of the population, and in many countries, light-to-moderate alcohol consumption is considered as an integral part of the diet. Although the relationship between alcohol intake and obesity is controversial, regular consumption of alcohol, through its effects in suppressing fat oxidation, is regarded as a risk factor for weight gain, increased abdominal obesity and hypertriglyceridemia. Indeed, alcohol taken with a meal leads to an increase in postprandial lipemia-an effect on postprandial metabolism that is opposite to that observed with exercise. Furthermore, although regular exercise training and/or a preprandial exercise session reduce postprandial lipemia independently of alcohol ingestion, the exercise-induced reduction in postprandial lipemia is nonetheless less pronounced when alcohol is also consumed with the meal. Whether or not alcohol influences exercise and sport performance remains contradictory. It is believed that alcohol has deleterious effects on the performance, although it may contribute to reduce pain and anxiety. The alcohol effects on sports performance depend on the type and dosage of alcohol, acute vs chronic administration, the alcohol elimination rate as well as the type of exercise.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

AIM: The aim of this study was to investigate the effect of an acute small ethanol (EtOH) dose (0.5 ml EtOH/kg fat-free mass, combined with carbohydrate) in a drink on endurance performance of trained cyclists. METHODS: Thirteen well-trained male cyclists took part in this study. A 60-min cycling endurance performance test (time trial) was performed in a calorimetric chamber after drinking an EtOH (30 +/- 1.8 ml) or a non-EtOH control (C) drink. RESULTS: Overall, EtOH induced a significant decrease in the average cycling power output (PO) (EtOH: 233 +/- 23 W versus C: 243 +/- 24 W, P < 0.01). The time course of mechanical PO showed an early decrease during the EtOH trial as compared to C (P < 0.01). Due to the lower PO, oxygen consumption, carbon dioxide production and glucose oxidation were significantly lower (P < 0.05) as compared to C. Relative to PO, heart rate response and ratings of perceived exertion (RPE) were increased by EtOH as compared to C (P < 0.05). In contrast, EtOH did not influence gross work efficiency, glycaemia and blood lactate concentration. CONCLUSIONS: These results show that the acute low dose of EtOH decreased endurance performance. An increase of cardio-vascular strain and psychobiological mechanisms may explain this decrease of endurance performance.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This review summarizes the rationale for personalized exercise training in obesity and diabetes, targeted at the level of maximal lipid oxidation as can be determined by exercise calorimetry. This measurement is reproducible and reflects muscles' ability to oxidize lipids. Targeted training at this level is well tolerated, increases the ability to oxidize lipids during exercise and improves body composition, lipid and inflammatory status, and glycated hemoglobin, thus representing a possible future strategy for exercise prescription in patients suffering from obesity and diabetes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This study aimed to compare the effects of 2 different prior endurance exercises on subsequent whole-body fat oxidation kinetics. Fifteen men performed 2 identical submaximal incremental tests (Incr2) on a cycle ergometer after (i) a ∼40-min submaximal incremental test (Incr1) followed by a 90-min continuous exercise performed at 50% of maximal aerobic power-output and a 1-h rest period (Heavy); and (ii) Incr1 followed by a 2.5-h rest period (Light). Fat oxidation was measured using indirect calorimetry and plotted as a function of exercise intensity during Incr1 and Incr2. A sinusoidal equation, including 3 independent variables (dilatation, symmetry and translation), was used to characterize the fat oxidation kinetics and to determine the intensity (Fat(max)) that elicited the maximal fat oxidation (MFO) during Incr. After the Heavy and Light trials, Fat(max), MFO, and fat oxidation rates were significantly greater during Incr2 than Incr1 (p < 0.001). However, Δ (i.e., Incr2-Incr1) Fat(max), MFO, and fat oxidation rates were greater in the Heavy compared with the Light trial (p < 0.05). The fat oxidation kinetics during Incr2(Heavy) showed a greater dilatation and rightward asymmetry than Incr1(Heavy), whereas only a greater dilatation was observed in Incr2(Light) (p < 0.05). This study showed that although to a lesser extent in the Light trial, both prior exercise sessions led to an increase in Fat(max), MFO, and absolute fat oxidation rates during Incr2, inducing significant changes in the shape of the fat oxidation kinetics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Acquired behavioral changes have essentially been described in advanced multiple sclerosis (MS). The present study was designed to determine whether behavioral modifications specifically related to the MS pathological process could be identified in the initial phase of the disease, as compared to control patients with chronic, relapsing and progressive inflammatory disorders not involving the central nervous system (CNS). Eighty-eight early MS patients (Expanded Disability Status Scale score <or= 2.5) and 48 controls were tested. Perceived changes by informants in behavioral control, goal-directed behavior, decision making, emotional expression, insight and interpersonal relationships were assessed using the Iowa Scale of Personality Change (ISPC). Executive behavioral disturbances were screened using the Dysexecutive Questionnaire (DEX). The mean change between the premorbid and postmorbid ISPC ratings was similar in the MS [12.2 (SD 15.6)] and in the control [11.5 (SD 15.1)] group. The perceived behavioral changes (PBCs) most frequently reported in both groups were lack of stamina, lability/moodiness, anxiety, vulnerability to stress and irritability. Pathological scores in the DEX were also similar in both groups. Correlations between PBCs and DEX scores were different in MS and control groups. MS patients with cognitive impairment had a marginally higher number of PBCs than control patients (p=0.056) and a significantly higher DEXp score (p=0.04). These results suggest that (1) PBCs occurring in early MS patients were not different from those induced by comparable chronic non-CNS disorders, (2) qualitative differences in the relationship between behavioral symptoms and executive-behavioral changes may exist between MS and control groups, and (3) behavioral symptoms seem associated with cognitive deficits in MS. We further plan to assess these observations longitudinally.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The main goal of training activities is to improve motor performance. After strenuous workouts, it is physiological to experience fatigue, which relieves within two weeks, and then induce an improvement in motor capacities. An overtraining syndrome is diagnosed when fatigue is postponed beyond two weeks, and affects mainly endurance athletes. It is a condition of chronic fatigue, underperformance and an increased vulnerability to infection leading to recurrent infections. The whole observed spectrum of symptoms is physiological, psychological, endocrinogical and immunological. All play a role in the failure to recover. Monitoring of athletes activities helps to prevent the syndrome with days with no sports. Rest, patience and empathy are the only ways of treatment options.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Athlete Biological Passport (ABP) is an individual electronic document that collects data regarding a specific athlete that is useful in differentiating between natural physiologic variations of selected biomarkers and deviations caused by artificial manipulations. A subsidiary of the endocrine module of the ABP, that which here is called Athlete Steroidal Passport (ASP), collects data on markers of an altered metabolism of endogenous steroidal hormones measured in urine samples. The ASP aims to identify not only doping with anabolic-androgenic steroids, but also most indirect steroid doping strategies such as doping with estrogen receptor antagonists and aromatase inhibitors. Development of specific markers of steroid doping, use of the athlete's previous measurements to define individual limits, with the athlete becoming his or her own reference, the inclusion of heterogeneous factors such as the UDPglucuronosyltransferase B17 genotype of the athlete, the knowledge of potentially confounding effects such as heavy alcohol consumption, the development of an external quality control system to control analytical uncertainty, and finally the use of Bayesian inferential methods to evaluate the value of indirect evidence have made the ASP a valuable alternative to deter steroid doping in elite sports. The ASP can be used to target athletes for gas chromatography/combustion/ isotope ratio mass spectrometry (GC/C/IRMS) testing, to withdraw temporarily the athlete from competing when an abnormality has been detected, and ultimately to lead to an antidoping infraction if that abnormality cannot be explained by a medical condition. Although the ASP has been developed primarily to ensure fairness in elite sports, its application in endocrinology for clinical purposes is straightforward in an evidence-based medicine paradigm.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The purpose of this review was to provide a synopsis of the literature concerning the physiological differences between cycling and running. By comparing physiological variables such as maximal oxygen consumption (V O(2max)), anaerobic threshold (AT), heart rate, economy or delta efficiency measured in cycling and running in triathletes, runners or cyclists, this review aims to identify the effects of exercise modality on the underlying mechanisms (ventilatory responses, blood flow, muscle oxidative capacity, peripheral innervation and neuromuscular fatigue) of adaptation. The majority of studies indicate that runners achieve a higher V O(2max) on treadmill whereas cyclists can achieve a V O(2max) value in cycle ergometry similar to that in treadmill running. Hence, V O(2max) is specific to the exercise modality. In addition, the muscles adapt specifically to a given exercise task over a period of time, resulting in an improvement in submaximal physiological variables such as the ventilatory threshold, in some cases without a change in V O(2max). However, this effect is probably larger in cycling than in running. At the same time, skill influencing motor unit recruitment patterns is an important influence on the anaerobic threshold in cycling. Furthermore, it is likely that there is more physiological training transfer from running to cycling than vice versa. In triathletes, there is generally no difference in V O(2max) measured in cycle ergometry and treadmill running. The data concerning the anaerobic threshold in cycling and running in triathletes are conflicting. This is likely to be due to a combination of actual training load and prior training history in each discipline. The mechanisms surrounding the differences in the AT together with V O(2max) in cycling and running are not largely understood but are probably due to the relative adaptation of cardiac output influencing V O(2max) and also the recruitment of muscle mass in combination with the oxidative capacity of this mass influencing the AT. Several other physiological differences between cycling and running are addressed: heart rate is different between the two activities both for maximal and submaximal intensities. The delta efficiency is higher in running. Ventilation is more impaired in cycling than in running. It has also been shown that pedalling cadence affects the metabolic responses during cycling but also during a subsequent running bout. However, the optimal cadence is still debated. Central fatigue and decrease in maximal strength are more important after prolonged exercise in running than in cycling.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aging process is associated with gradual and progressive loss of muscle mass along with lowered strength and physical endurance. This condition, sarcopenia, has been widely observed with aging in sedentary adults. Regular aerobic and resistance exercise programs have been shown to counteract most aspects of sarcopenia. In addition, good nutrition, especially adequate protein and energy intake, can help limit and treat age-related declines in muscle mass, strength, and functional abilities. Protein nutrition in combination with exercise is considered optimal for maintaining muscle function. With the goal of providing recommendations for health care professionals to help older adults sustain muscle strength and function into older age, the European Society for Clinical Nutrition and Metabolism (ESPEN) hosted a Workshop on Protein Requirements in the Elderly, held in Dubrovnik on November 24 and 25, 2013. Based on the evidence presented and discussed, the following recommendations are made (a) for healthy older people, the diet should provide at least 1.0-1.2 g protein/kg body weight/day, (b) for older people who are malnourished or at risk of malnutrition because they have acute or chronic illness, the diet should provide 1.2-1.5 g protein/kg body weight/day, with even higher intake for individuals with severe illness or injury, and (c) daily physical activity or exercise (resistance training, aerobic exercise) should be undertaken by all older people, for as long as possible.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Humoral factors play an important role in the control of exercise hyperpnea. The role of neuromechanical ventilatory factors, however, is still being investigated. We tested the hypothesis that the afferents of the thoracopulmonary system, and consequently of the neuromechanical ventilatory loop, have an influence on the kinetics of oxygen consumption (VO2), carbon dioxide output (VCO2), and ventilation (VE) during moderate intensity exercise. We did this by comparing the ventilatory time constants (tau) of exercise with and without an inspiratory load. Fourteen healthy, trained men (age 22.6 +/- 3.2 yr) performed a continuous incremental cycle exercise test to determine maximal oxygen uptake (VO2max = 55.2 +/- 5.8 ml x min(-1) x kg(-1)). On another day, after unloaded warm-up they performed randomized constant-load tests at 40% of their VO2max for 8 min, one with and the other without an inspiratory threshold load of 15 cmH2O. Ventilatory variables were obtained breath by breath. Phase 2 ventilatory kinetics (VO2, VCO2, and VE) could be described in all cases by a monoexponential function. The bootstrap method revealed small coefficients of variation for the model parameters, indicating an accurate determination for all parameters. Paired Student's t-tests showed that the addition of the inspiratory resistance significantly increased the tau during phase 2 of VO2 (43.1 +/- 8.6 vs. 60.9 +/- 14.1 s; P < 0.001), VCO2 (60.3 +/- 17.6 vs. 84.5 +/- 18.1 s; P < 0.001) and VE (59.4 +/- 16.1 vs. 85.9 +/- 17.1 s; P < 0.001). The average rise in tau was 41.3% for VO2, 40.1% for VCO2, and 44.6% for VE. The tau changes indicated that neuromechanical ventilatory factors play a role in the ventilatory response to moderate exercise.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The purpose of this study was to compare O(2) uptake ((.)VO(2)) and muscle electromyography activity kinetics during moderate and severe exercise to test the hypothesis of progressive recruitment of fast-twitch fibers in the explanation of the VO(2) slow component. After an incremental test to exhaustion, 7 trained cyclists (mean +/- SD, 61.4 +/- 4.2 ml x min(-1) x kg(- 1)) performed several square-wave transitions for 6 min at moderate and severe intensities on a bicycle ergometer. The (.)VO(2) response and the electrical activity (i.e., median power frequency, MDF) of the quadriceps vastus lateralis and vastus medialis of both lower limbs were measured continuously during exercise. After 2 to 3 min of exercise onset, MDF values increased similarly during moderate and severe exercise for almost all muscles whereas a (.)VO(2) slow component occurred during severe exercise. There was no relationship between the increase of MDF values and the magnitude of the (.)VO(2) slow component during the severe exercise. These results suggest that the origin of the slow component may not be due to the progressive recruitment of fast-twitch fibers.