4 resultados para peptide analysis

em Université de Lausanne, Switzerland


Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: The Cancer Vaccine Consortium of the Cancer Research Institute (CVC-CRI) conducted a multicenter HLA-peptide multimer proficiency panel (MPP) with a group of 27 laboratories to assess the performance of the assay. EXPERIMENTAL DESIGN: Participants used commercially available HLA-peptide multimers and a well characterized common source of peripheral blood mononuclear cells (PBMC). The frequency of CD8+ T cells specific for two HLA-A2-restricted model antigens was measured by flow cytometry. The panel design allowed for participants to use their preferred staining reagents and locally established protocols for both cell labeling, data acquisition and analysis. RESULTS: We observed significant differences in both the performance characteristics of the assay and the reported frequencies of specific T cells across laboratories. These results emphasize the need to identify the critical variables important for the observed variability to allow for harmonization of the technique across institutions. CONCLUSIONS: Three key recommendations emerged that would likely reduce assay variability and thus move toward harmonizing of this assay. (1) Use of more than two colors for the staining (2) collect at least 100,000 CD8 T cells, and (3) use of a background control sample to appropriately set the analytical gates. We also provide more insight into the limitations of the assay and identified additional protocol steps that potentially impact the quality of data generated and therefore should serve as primary targets for systematic analysis in future panels. Finally, we propose initial guidelines for harmonizing assay performance which include the introduction of standard operating protocols to allow for adequate training of technical staff and auditing of test analysis procedures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Novel cancer vaccines are capableto efficiently induce and boost humantumor antigen specific T-cells. However,the properties of these CD8T-cells are only partially characterized.For in depth investigation ofT-cells following Melan-A/MART-1peptide vaccination in melanoma patients,we conducted a detailed prospectivestudy at the single cell level.We first sorted individual human naiveand effector CD8 T-cells from peripheralblood by flow cytometry, andtested a modified RT-PCR protocolincluding a global amplification ofexpressed mRNAs to obtain sufficientcDNAfromsingle cells.We successfullydetected the expression ofseveral specific genes of interest evendown to 106-fold dilution (equivalentto 10-5 cell). We then analyzed tumor-specific effector memory (EM)CD8T-cell subpopulations ex vivo, assingle cells from vaccinated melanomapatients. To elucidate the hallmarksof effective immunity the genesignatures were defined by a panel ofgenes related to effector functions(e.g. IFN-, granzyme B, perforin),and individual clonotypes were identifiedaccording to the expression ofdistinct T-cell receptors (TCR). Usingthis novel single cell analysis approach,we observed that T-cell differentiationis clonotype dependent,with a progressive restriction in TCRBV clonotype diversity from EMCD28pos to EMCD28neg subsets. However,the effector function gene imprintingis clonotype-independent,but dependent on differentiation,since it correlates with the subset oforigin (EMCD28pos or EMCD28neg). We also conducted a detailedcomparative analysis after vaccinationwith natural vs. analog Melan-Apeptide. We found that the peptideused for vaccination determines thefunctional outcome of individualT-cell clonotypes, with native peptideinducing more potent effector functions.Yet, selective clonotypic expansionwith differentiation was preservedregardless of the peptide usedfor vaccination. In summary, the exvivo single cell RT-PCR approach ishighly sensitive and efficient, andrepresents a reliable and powerfultool to refine our current view of molecularprocesses taking place duringT-cell differentiation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To directly assess the binding of exogenous peptides to cell surface-associated MHC class I molecules at the single cell level, we examined the possibility of combining the use of biotinylated peptide derivatives with an immunofluorescence detection system based on flow cytometry. Various biotinylated derivatives of the adenovirus 5 early region 1A peptide 234-243, an antigenic peptide recognized by CTL in the context of H-2Db, were first screened in functional assays for their ability to bind efficiently to Db molecules on living cells. Suitable peptide derivatives were then tested for their ability to generate positive fluorescence signals upon addition of phycoerythrin-labeled streptavidin to peptide derivative-bearing cells. Strong fluorescent staining of Db-expressing cells was achieved after incubation with a peptide derivative containing a biotin group at the C-terminus. Competition experiments using the unmodified parental peptide as well as unrelated peptides known to bind to Kd, Kb, or Db, respectively, established that binding of the biotinylated peptide to living cells was Db-specific. By using Con A blasts derived from different H-2 congenic mouse strains, it could be shown that the biotinylated peptide bound only to Db among > 20 class I alleles tested. Moreover, binding of the biotinylated peptide to cells expressing the Dbm13 and Dbm14 mutant molecules was drastically reduced compared to Db. Binding of the biotinylated peptide to freshly isolated Db+ cells was readily detectable, allowing direct assessment of the relative amount of peptide bound to distinct lymphocyte subpopulations by three-color flow cytometry. While minor differences between peripheral T and B cells could be documented, thymocytes were found to differ widely in their peptide binding activity. In all cases, these differences correlated positively with the differential expression of Db at the cell surface. Finally, kinetic studies at different temperatures strongly suggested that the biotinylated peptide first associated with Db molecules available constitutively at the cell surface and then with newly arrived Db molecules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hemorrhage and resuscitation (H/R) leads to phosphorylation of mitogen-activated stress kinases, an event that is associated with organ damage. Recently, a specific, cell-penetrating, protease-resistant inhibitory peptide of the mitogen-activated protein kinase c-JUN N-terminal kinase (JNK) was developed (D-JNKI-1). Here, using this peptide, we tested if inhibition of JNK protects against organ damage after H/R. Male Sprague-Dawley rats were treated with D-JNKI-1 (11 mg/kg, i.p.) or vehicle. Thirty minutes later, rats were hemorrhaged for 1 h to a MAP of 30 to 35 mmHg and then resuscitated with 60% of the shed blood and twice the shed blood volume as Ringer lactate. Tissues were harvested 2 h later. ANOVA with Tukey post hoc analysis or Kruskal-Wallis ANOVA on ranks, P < 0.05, was considered significant. c-JUN N-terminal kinase inhibition decreased serum alanine aminotransferase activity as a marker of liver injury by 70%, serum creatine kinase activity by 67%, and serum lactate dehydrogenase activity by 60% as compared with vehicle treatment. The histological tissue damage observed was blunted after D-JNKI-1 pretreatment both for necrotic and apoptotic cell death. Hepatic leukocyte infiltration and serum IL-6 levels were largely diminished after D-JNKI-1 pretreatment. The extent of oxidative stress as evaluated by immunohistochemical detection of 4-hydroxynonenal was largely abrogated after JNK inhibition. After JNK inhibition, activation of cJUN after H/R was also reduced. Hemorrhage and resuscitation induces a systemic inflammatory response and leads to end-organ damage. These changes are mediated, at least in part, by JNK. Therefore, JNK inhibition deserves further evaluation as a potential treatment option in patients after resuscitated blood loss.