36 resultados para penalty-based aggregation functions
em Université de Lausanne, Switzerland
Resumo:
OBJECTIVES: In this population-based study, reference values were generated for renal length, and the heritability and factors associated with kidney length were assessed. METHODS: Anthropometric parameters and renal ultrasound measurements were assessed in randomly selected nuclear families of European ancestry (Switzerland). The adjusted narrow sense heritability of kidney size parameters was estimated by maximum likelihood assuming multivariate normality after power transformation. Gender-specific reference centiles were generated for renal length according to body height in the subset of non-diabetic non-obese participants with normal renal function. RESULTS: We included 374 men and 419 women (mean ± SD, age 47 ± 18 and 48 ± 17 years, BMI 26.2 ± 4 and 24.5 ± 5 kg/m(2), respectively) from 205 families. Renal length was 11.4 ± 0.8 cm in men and 10.7 ± 0.8 cm in women; there was no difference between right and left renal length. Body height, weight and estimated glomerular filtration rate (eGFR) were positively associated with renal length, kidney function negatively, age quadratically, whereas gender and hypertension were not. The adjusted heritability estimates of renal length and volume were 47.3 ± 8.5 % and 45.5 ± 8.8 %, respectively (P < 0.001). CONCLUSION: The significant heritability of renal length and volume highlights the familial aggregation of this trait, independently of age and body size. Population-based references for renal length provide a useful guide for clinicians. KEY POINTS: • Renal length and volume are heritable traits, independent of age and size. • Based on a European population, gender-specific reference values/percentiles are provided for renal length. • Renal length correlates positively with body length and weight. • There was no difference between right and left renal lengths in this study. • This negates general teaching that the left kidney is larger and longer.
Resumo:
Cerebral microangiopathy (CMA) has been associated with executive dysfunction and fronto-parietal neural network disruption. Advances in magnetic resonance imaging allow more detailed analyses of gray (e.g., voxel-based morphometry-VBM) and white matter (e.g., diffusion tensor imaging-DTI) than traditional visual rating scales. The current study investigated patients with early CMA and healthy control subjects with all three approaches. Neuropsychological assessment focused on executive functions, the cognitive domain most discussed in CMA. The DTI and age-related white matter changes rating scales revealed convergent results showing widespread white matter changes in early CMA. Correlations were found in frontal and parietal areas exclusively with speeded, but not with speed-corrected executive measures. The VBM analyses showed reduced gray matter in frontal areas. All three approaches confirmed the hypothesized fronto-parietal network disruption in early CMA. Innovative methods (DTI) converged with results from conventional methods (visual rating) while allowing greater spatial and tissue accuracy. They are thus valid additions to the analysis of neural correlates of cognitive dysfunction. We found a clear distinction between speeded and nonspeeded executive measures in relationship to imaging parameters. Cognitive slowing is related to disease severity in early CMA and therefore important for early diagnostics.
Resumo:
INTRODUCTION/OBJECTIVES: Detection rates for adenoma and early colorectal cancer (CRC) are insufficient due to low compliance towards invasive screening procedures, like colonoscopy.Available non-invasive screening tests have unfortunately low sensitivity and specificity performances.Therefore, there is a large unmet need calling for a cost-effective, reliable and non-invasive test to screen for early neoplastic and pre-neoplastic lesions AIMS & Methods: The objective is to develop a screening test able to detect early CRCs and adenomas.This test is based on a nucleic acids multi-gene assay performed on peripheral blood mononuclear cells (PBMCs).A colonoscopy-controlled feasibility study was conducted on 179 subjects.The first 92 subjects was used as training set to generate a statistical significant signature.Colonoscopy revealed 21 subjects with CRC,30 with adenoma bigger than 1 cm and 41 with no neoplastic or inflammatory lesions.The second group of 48 subjects (controls, CRC and polyps) was used as a test set and will be kept blinded for the entire data analysis.To determine the organ and disease specificity 38 subjects were used:24 with inflammatory bowel disease (IBD),14 with other cancers than CRC (OC).Blood samples were taken from each patient the day of the colonoscopy and PBMCs were purified. Total RNA was extracted following standard procedures.Multiplex RT-qPCR was applied on 92 different candidate biomarkers.Different univariate and multivariate statistical methods were applied on these candidates and among them 60 biomarkers with significant p-values (<0.01) were selected.These biomarkers are involved in several different biological functions as cellular movement,cell signaling and interaction,tissue and cellular development,cancer and cell growth and proliferation.Two distinct biomarker signatures are used to separate patients without lesion from those with cancer or with adenoma, named COLOX CRC and COLOX POL respectively.COLOX performances were validated using random resampling method, bootstrap. RESULTS: COLOX CRC and POL tests successfully separate patients without lesions from those with CRC (Se 67%,Sp 93%,AUC 0.87) and from those with adenoma bigger than 1cm (Se 63%,Sp 83%,AUC 0.77),respectively. 6/24 patients in the IBD group and 1/14 patients in the OC group have a positive COLOX CRC CONCLUSION: The two COLOX tests demonstrated a high sensitivity and specificity to detect the presence of CRCs and adenomas bigger than 1 cm.A prospective, multicenter, pivotal study is underway in order to confirm these promising results in a larger cohort.
Resumo:
Carotenoid-based yellowish to red plumage colors are widespread visual signals used in sexual and social communication. To understand their ultimate signaling functions, it is important to identify the proximate mechanism promoting variation in coloration. Carotenoid-based colors combine structural and pigmentary components, but the importance of the contribution of structural components to variation in pigment-based colors (i.e., carotenoid-based colors) has been undervalued. In a field experiment with great tits (Parus major), we combined a brood size manipulation with a simultaneous carotenoid supplementation in order to disentangle the effects of carotenoid availability and early growth condition on different components of the yellow breast feathers. By defining independent measures of feather carotenoid content (absolute carotenoid chroma) and background structure (background reflectance), we demonstrate that environmental factors experienced during the nestling period, namely, early growth conditions and carotenoid availability, contribute independently to variation in yellow plumage coloration. While early growth conditions affected the background reflectance of the plumage, the availability of carotenoids affected the absolute carotenoid chroma, the peak of maximum ultraviolet reflectance, and the overall shape, that is, chromatic information of the reflectance curves. These findings demonstrate that environment-induced variation in background structure contributes significantly to intraspecific variation in yellow carotenoid-based plumage coloration.
Resumo:
Notch proteins are important in binary cell-fate decisions and inhibiting differentiation in many developmental systems, and aberrant Notch signaling is associated with tumorigenesis. The role of Notch signaling in mammalian skin is less well characterized and is mainly based on in vitro studies, which suggest that Notch signaling induces differentiation in mammalian skin. Conventional gene targeting is not applicable to establishing the role of Notch receptors or ligands in the skin because Notch1-/- embryos die during gestation. Therefore, we used a tissue-specific inducible gene-targeting approach to study the physiological role of the Notch1 receptor in the mouse epidermis and the corneal epithelium of adult mice. Unexpectedly, ablation of Notch1 results in epidermal and corneal hyperplasia followed by the development of skin tumors and facilitated chemical-induced skin carcinogenesis. Notch1 deficiency in skin and in primary keratinocytes results in increased and sustained expression of Gli2, causing the development of basal-cell carcinoma-like tumors. Furthermore, Notch1 inactivation in the epidermis results in derepressed beta-catenin signaling in cells that should normally undergo differentiation. Enhanced beta-catenin signaling can be reversed by re-introduction of a dominant active form of the Notch1 receptor. This leads to a reduction in the signaling-competent pool of beta-catenin, indicating that Notch1 can inhibit beta-catenin-mediated signaling. Our results indicate that Notch1 functions as a tumor-suppressor gene in mammalian skin.
Resumo:
Colour polymorphism is widespread among vertebrates and plays important roles in prey-predator interactions, thermoregulation, social competition, and sexual selection. However, the genetic mechanisms involved in colour variation have been studied mainly in domestic mammals and birds, whereas information on wild animals remains scarce. Interestingly, the pro-opiomelanocortin gene (POMC) gives rise to melanocortin hormones that trigger melanogenesis (by binding the melanocortin-1-receptor; Mc1r) and other physiological and behavioural functions (by binding the melanocortin receptors Mc1-5rs). Owing to its pleiotropic effect, the POMC gene could therefore account for the numerous covariations between pigmentation and other phenotypic traits. We screened the POMC and Mc1r genes in 107 wild asp vipers (Vipera aspis) that can exhibit four discrete colour morphs (two unpatterned morphs: concolor or melanistic; two patterned morphs: blotched or lined) in a single population. Our study revealed a correlation between a single nucleotide polymorphism situated within the 3-untranslated region of the POMC gene and colour variation, whereas Mc1r was not found to be polymorphic. To the best of our knowledge, we disclose for the first time a relationship between a mutation at the POMC gene and coloration in a wild animal, as well as a correlation between a genetic marker and coloration in a snake species. Interestingly, similar mutations within the POMC 3-untranslated region are linked to human obesity and alcohol and drug dependence. Combined with our results, this suggests that the 3-untranslated region of the POMC gene may play a role in its regulation in distant vertebrates.
Resumo:
OBJECTIVE: The aim of this pilot study was to describe problems in functioning and associated rehabilitation needs in persons with spinal cord injury after the 2010 earthquake in Haiti by applying a newly developed tool based on the International Classification of Functioning, Disability and Health (ICF). DESIGN: Pilot study. SUBJECTS: Eighteen persons with spinal cord injury (11 women, 7 men) participated in the needs assessment. Eleven patients had complete lesions (American Spinal Injury Association Impairment Scale; AIS A), one patient had tetraplegia. METHODS: Data collection included information from the International Spinal Cord Injury Core Data Set and a newly developed needs assessment tool based on ICF Core Sets. This tool assesses the level of functioning, the corresponding rehabilitation need, and required health professional. Data were summarized using descriptive statistics. RESULTS: In body functions and body structures, patients showed typical problems following spinal cord injury. Nearly all patients showed limitations and restrictions in their activities and participation related to mobility, self-care and aspects of social integration. Several environmental factors presented barriers to these limitations and restrictions. However, the availability of products and social support were identified as facilitators. Rehabilitation needs were identified in nearly all aspects of functioning. To address these needs, a multidisciplinary approach would be needed. CONCLUSION: This ICF-based needs assessment provided useful information for rehabilitation planning in the context of natural disaster. Future studies are required to test and, if necessary, adapt the assessment.
Resumo:
We introduce an algebraic operator framework to study discounted penalty functions in renewal risk models. For inter-arrival and claim size distributions with rational Laplace transform, the usual integral equation is transformed into a boundary value problem, which is solved by symbolic techniques. The factorization of the differential operator can be lifted to the level of boundary value problems, amounting to iteratively solving first-order problems. This leads to an explicit expression for the Gerber-Shiu function in terms of the penalty function.
Resumo:
Dendritic cells (DCs) are central player in immunity by bridging the innate and adaptive arms of the immune system (IS). Interferons (IFNs) are one of the most important factors that regulate both innate and adaptive immunity too. Thus, the understanding of how type II and I IFNs modulate the immune-regulatory properties of DCs is a central issue in immunology. In this paper, we will address this point in the light of the most recent literature, also highlighting the controversial data reported in the field. According to the wide literature available, type II as well as type I IFNs appear, at the same time, to collaborate, to induce additive effects or overlapping functions, as well as to counterregulate each one's effects on DC biology and, in general, the immune response. The knowledge of these effects has important therapeutic implications in the treatment of infectious/autoimmune diseases and cancer and indicates strategies for using IFNs as vaccine adjuvants and in DC-based immune therapeutic approaches.
Resumo:
The generation of an antigen-specific T-lymphocyte response is a complex multi-step process. Upon T-cell receptor-mediated recognition of antigen presented by activated dendritic cells, naive T-lymphocytes enter a program of proliferation and differentiation, during the course of which they acquire effector functions and may ultimately become memory T-cells. A major goal of modern immunology is to precisely identify and characterize effector and memory T-cell subpopulations that may be most efficient in disease protection. Sensitive methods are required to address these questions in exceedingly low numbers of antigen-specific lymphocytes recovered from clinical samples, and not manipulated in vitro. We have developed new techniques to dissect immune responses against viral or tumor antigens. These allow the isolation of various subsets of antigen-specific T-cells (with major histocompatibility complex [MHC]-peptide multimers and five-color FACS sorting) and the monitoring of gene expression in individual cells (by five-cell reverse transcription-polymerase chain reaction [RT-PCR]). We can also follow their proliferative life history by flow-fluorescence in situ hybridization (FISH) analysis of average telomere length. Recently, using these tools, we have identified subpopulations of CD8+ T-lymphocytes with distinct proliferative history and partial effector-like properties. Our data suggest that these subsets descend from recently activated T-cells and are committed to become differentiated effector T-lymphocytes.
Resumo:
Auditory evoked potentials are informative of intact cortical functions of comatose patients. The integrity of auditory functions evaluated using mismatch negativity paradigms has been associated with their chances of survival. However, because auditory discrimination is assessed at various delays after coma onset, it is still unclear whether this impairment depends on the time of the recording. We hypothesized that impairment in auditory discrimination capabilities is indicative of coma progression, rather than of the comatose state itself and that rudimentary auditory discrimination remains intact during acute stages of coma. We studied 30 post-anoxic comatose patients resuscitated from cardiac arrest and five healthy, age-matched controls. Using a mismatch negativity paradigm, we performed two electroencephalography recordings with a standard 19-channel clinical montage: the first within 24 h after coma onset and under mild therapeutic hypothermia, and the second after 1 day and under normothermic conditions. We analysed electroencephalography responses based on a multivariate decoding algorithm that automatically quantifies neural discrimination at the single patient level. Results showed high average decoding accuracy in discriminating sounds both for control subjects and comatose patients. Importantly, accurate decoding was largely independent of patients' chance of survival. However, the progression of auditory discrimination between the first and second recordings was informative of a patient's chance of survival. A deterioration of auditory discrimination was observed in all non-survivors (equivalent to 100% positive predictive value for survivors). We show, for the first time, evidence of intact auditory processing even in comatose patients who do not survive and that progression of sound discrimination over time is informative of a patient's chance of survival. Tracking auditory discrimination in comatose patients could provide new insight to the chance of awakening in a quantitative and automatic fashion during early stages of coma.
Resumo:
Gene-on-gene regulations are key components of every living organism. Dynamical abstract models of genetic regulatory networks help explain the genome's evolvability and robustness. These properties can be attributed to the structural topology of the graph formed by genes, as vertices, and regulatory interactions, as edges. Moreover, the actual gene interaction of each gene is believed to play a key role in the stability of the structure. With advances in biology, some effort was deployed to develop update functions in Boolean models that include recent knowledge. We combine real-life gene interaction networks with novel update functions in a Boolean model. We use two sub-networks of biological organisms, the yeast cell-cycle and the mouse embryonic stem cell, as topological support for our system. On these structures, we substitute the original random update functions by a novel threshold-based dynamic function in which the promoting and repressing effect of each interaction is considered. We use a third real-life regulatory network, along with its inferred Boolean update functions to validate the proposed update function. Results of this validation hint to increased biological plausibility of the threshold-based function. To investigate the dynamical behavior of this new model, we visualized the phase transition between order and chaos into the critical regime using Derrida plots. We complement the qualitative nature of Derrida plots with an alternative measure, the criticality distance, that also allows to discriminate between regimes in a quantitative way. Simulation on both real-life genetic regulatory networks show that there exists a set of parameters that allows the systems to operate in the critical region. This new model includes experimentally derived biological information and recent discoveries, which makes it potentially useful to guide experimental research. The update function confers additional realism to the model, while reducing the complexity and solution space, thus making it easier to investigate.
Resumo:
Climate warming leads to a decrease in biodiversity. Organisms can deal with the new prevailing environmental conditions by one of two main routes, namely evolving new genetic adaptations or through phenotypic plasticity to modify behaviour and physiology. Melanin-based colouration has important functions in animals including a role in camouflage and thermoregulation, protection against UV-radiation and pathogens and, furthermore, genes involved in melanogenesis can pleiotropically regulate behaviour and physiology. In this article, I review the current evidence that differently coloured individuals are differentially sensitive to climate change. Predicting which of dark or pale colour variants (or morphs) will be more penalized by climate change will depend on the adaptive function of melanism in each species as well as how the degree of colouration covaries with behaviour and physiology. For instance, because climate change leads to a rise in temperature and UV-radiation and dark colouration plays a role in UV-protection, dark individuals may be less affected from global warming, if this phenomenon implies more solar radiation particularly in habitats of pale individuals. In contrast, as desertification increases, pale colouration may expand in those regions, whereas dark colourations may expand in regions where humidity is predicted to increase. Dark colouration may be also indirectly selected by climate warming because genes involved in the production of melanin pigments confer resistance to a number of stressful factors including those associated with climate warming. Furthermore, darker melanic individuals are commonly more aggressive than paler conspecifics, and hence they may better cope with competitive interactions due to invading species that expand their range in northern latitudes and at higher altitudes. To conclude, melanin may be a major component involved in adaptation to climate warming, and hence in animal populations melanin-based colouration is likely to change as an evolutionary or plastic response to climate warming.
Resumo:
Protein α-helical coiled coil structures that elicit antibody responses, which block critical functions of medically important microorganisms, represent a means for vaccine development. By using bioinformatics algorithms, a total of 50 antigens with α-helical coiled coil motifs orthologous to Plasmodium falciparum were identified in the P. vivax genome. The peptides identified in silico were chemically synthesized; circular dichroism studies indicated partial or high α-helical content. Antigenicity was evaluated using human sera samples from malaria-endemic areas of Colombia and Papua New Guinea. Eight of these fragments were selected and used to assess immunogenicity in BALB/c mice. ELISA assays indicated strong reactivity of serum samples from individuals residing in malaria-endemic regions and sera of immunized mice, with the α-helical coiled coil structures. In addition, ex vivo production of IFN-γ by murine mononuclear cells confirmed the immunogenicity of these structures and the presence of T-cell epitopes in the peptide sequences. Moreover, sera of mice immunized with four of the eight antigens recognized native proteins on blood-stage P. vivax parasites, and antigenic cross-reactivity with three of the peptides was observed when reacted with both the P. falciparum orthologous fragments and whole parasites. Results here point to the α-helical coiled coil peptides as possible P. vivax malaria vaccine candidates as were observed for P. falciparum. Fragments selected here warrant further study in humans and non-human primate models to assess their protective efficacy as single components or assembled as hybrid linear epitopes.
Resumo:
Over thirty years ago, Leamer (1983) - among many others - expressed doubts about the quality and usefulness of empirical analyses for the economic profession by stating that "hardly anyone takes data analyses seriously. Or perhaps more accurately, hardly anyone takes anyone else's data analyses seriously" (p.37). Improvements in data quality, more robust estimation methods and the evolution of better research designs seem to make that assertion no longer justifiable (see Angrist and Pischke (2010) for a recent response to Leamer's essay). The economic profes- sion and policy makers alike often rely on empirical evidence as a means to investigate policy relevant questions. The approach of using scientifically rigorous and systematic evidence to identify policies and programs that are capable of improving policy-relevant outcomes is known under the increasingly popular notion of evidence-based policy. Evidence-based economic policy often relies on randomized or quasi-natural experiments in order to identify causal effects of policies. These can require relatively strong assumptions or raise concerns of external validity. In the context of this thesis, potential concerns are for example endogeneity of policy reforms with respect to the business cycle in the first chapter, the trade-off between precision and bias in the regression-discontinuity setting in chapter 2 or non-representativeness of the sample due to self-selection in chapter 3. While the identification strategies are very useful to gain insights into the causal effects of specific policy questions, transforming the evidence into concrete policy conclusions can be challenging. Policy develop- ment should therefore rely on the systematic evidence of a whole body of research on a specific policy question rather than on a single analysis. In this sense, this thesis cannot and should not be viewed as a comprehensive analysis of specific policy issues but rather as a first step towards a better understanding of certain aspects of a policy question. The thesis applies new and innovative identification strategies to policy-relevant and topical questions in the fields of labor economics and behavioral environmental economics. Each chapter relies on a different identification strategy. In the first chapter, we employ a difference- in-differences approach to exploit the quasi-experimental change in the entitlement of the max- imum unemployment benefit duration to identify the medium-run effects of reduced benefit durations on post-unemployment outcomes. Shortening benefit duration carries a double- dividend: It generates fiscal benefits without deteriorating the quality of job-matches. On the contrary, shortened benefit durations improve medium-run earnings and employment possibly through containing the negative effects of skill depreciation or stigmatization. While the first chapter provides only indirect evidence on the underlying behavioral channels, in the second chapter I develop a novel approach that allows to learn about the relative impor- tance of the two key margins of job search - reservation wage choice and search effort. In the framework of a standard non-stationary job search model, I show how the exit rate from un- employment can be decomposed in a way that is informative on reservation wage movements over the unemployment spell. The empirical analysis relies on a sharp discontinuity in unem- ployment benefit entitlement, which can be exploited in a regression-discontinuity approach to identify the effects of extended benefit durations on unemployment and survivor functions. I find evidence that calls for an important role of reservation wage choices for job search be- havior. This can have direct implications for the optimal design of unemployment insurance policies. The third chapter - while thematically detached from the other chapters - addresses one of the major policy challenges of the 21st century: climate change and resource consumption. Many governments have recently put energy efficiency on top of their agendas. While pricing instru- ments aimed at regulating the energy demand have often been found to be short-lived and difficult to enforce politically, the focus of energy conservation programs has shifted towards behavioral approaches - such as provision of information or social norm feedback. The third chapter describes a randomized controlled field experiment in which we discuss the effective- ness of different types of feedback on residential electricity consumption. We find that detailed and real-time feedback caused persistent electricity reductions on the order of 3 to 5 % of daily electricity consumption. Also social norm information can generate substantial electricity sav- ings when designed appropriately. The findings suggest that behavioral approaches constitute effective and relatively cheap way of improving residential energy-efficiency.