13 resultados para passive safety systems
em Université de Lausanne, Switzerland
Resumo:
The academic activities led by the Unit of Community Pharmacy can be classified as translational. Our group is interested in person-centered pharmaceutical services aimed at a more responsible use of drugs (effectiveness, safety, efficiency) in collaboration with physicians and other health care professionals in a primary care setting. The following domains of education and research are high priorities for our group: medication therapy management, medication adherence, integrated care, individualization of therapies, care management for the elderly and e-health.
Resumo:
BACKGROUND: European Surveillance of Congenital Anomalies (EUROCAT) is a network of population-based congenital anomaly registries in Europe surveying more than 1 million births per year, or 25% of the births in the European Union. This paper describes the potential of the EUROCAT collaboration for pharmacoepidemiology and drug safety surveillance. METHODS: The 34 full members and 6 associate members of the EUROCAT network were sent a questionnaire about their data sources on drug exposure and on drug coding. Available data on drug exposure during the first trimester available in the central EUROCAT database for the years 1996-2000 was summarised for 15 out of 25 responding full members. RESULTS: Of the 40 registries, 29 returned questionnaires (25 full and 4 associate members). Four of these registries do not collect data on maternal drug use. Of the full members, 15 registries use the EUROCAT drug code, 4 use the international ATC drug code, 3 registries use another coding system and 7 use a combination of these coding systems. Obstetric records are the most frequently used sources of drug information for the registries, followed by interviews with the mother. Only one registry uses pharmacy data. Percentages of cases with drug exposure (excluding vitamins/minerals) varied from 4.4% to 26.0% among different registries. The categories of drugs recorded varied widely between registries. CONCLUSIONS: Practices vary widely between registries regarding recording drug exposure information. EUROCAT has the potential to be an effective collaborative framework to contribute to post-marketing drug surveillance in relation to teratogenic effects, but work is needed to implement ATC drug coding more widely, and to diversify the sources of information used to determine drug exposure in each registry.
Resumo:
BACKGROUND: In the United States, the Agency for Healthcare Research and Quality (AHRQ) has developed 20 Patient Safety Indicators (PSIs) to measure the occurrence of hospital adverse events from medico-administrative data coded according to the ninth revision of the international classification of disease (ICD-9-CM). The adaptation of these PSIs to the WHO version of ICD-10 was carried out by an international consortium. METHODS: Two independent teams transcoded ICD-9-CM diagnosis codes proposed by the AHRQ into ICD-10-WHO. Using a Delphi process, experts from six countries evaluated each code independently, stating whether it was "included", "excluded" or "uncertain". During a two-day meeting, the experts then discussed the codes that had not obtained a consensus, and the additional codes proposed. RESULTS: Fifteen PSIs were adapted. Among the 2569 proposed diagnosis codes, 1775 were unanimously adopted straightaway. The 794 remaining codes and 2541 additional codes were discussed. Three documents were prepared: (1) a list of ICD-10-WHO codes for the 15 adapted PSIs; (2) recommendations to the AHRQ for the improvement of the nosological frame and the coding of PSI with ICD-9-CM; (3) recommendations to the WHO to improve ICD-10. CONCLUSIONS: This work allows international comparisons of PSIs among the countries using ICD-10. Nevertheless, these PSIs must still be evaluated further before being broadly used.
Resumo:
Injectable drugs are high-risk products and their reconstitution in hospital wards is a potential source of errors. Thus, in order to secure the reconstitution process and thereby improve safety, the pharmacy department of Lausanne University Hospital is focusing on developing ready-to-use forms (CIVAS). These preparations are compounded in controlled clean rooms and are analyzed prior to release. In the intensive care unit, amiodarone 12.5 mg/mL in glucose 5% is one of the high-risk preparations, which has led the pharmacy to develop a ready-to-use solution. To this end, a one-year stability study was initiated, and the preliminary results (after six months) are illustrated here. A stability-indicating HPLC method was developed and validated for monitoring the concentration of amiodarone. Batches were stored at 5 °C and 30 °C, which were analyzed immediately after preparation, after one, two, four and six months of storage. The pH and osmolality values were monitored at the respective time intervals. It was observed that after six months, all the results were within specifications. However, the pH values started to decrease after two months when amiodarone was stored at 30 °C. After six months, a degradation peak appeared on the chromatogram of these solutions, which suggested that amiodarone is more stable at 5 °C. The preliminary results obtained in this study indicated that injectable amiodarone solutions are stable for six months under refrigerated storage conditions. The study is ongoing.
Resumo:
OBJECTIVE: As part of the WHO ICD-11 development initiative, the Topic Advisory Group on Quality and Safety explores meta-features of morbidity data sets, such as the optimal number of secondary diagnosis fields. DESIGN: The Health Care Quality Indicators Project of the Organization for Economic Co-Operation and Development collected Patient Safety Indicator (PSI) information from administrative hospital data of 19-20 countries in 2009 and 2011. We investigated whether three countries that expanded their data systems to include more secondary diagnosis fields showed increased PSI rates compared with six countries that did not. Furthermore, administrative hospital data from six of these countries and two American states, California (2011) and Florida (2010), were analysed for distributions of coded patient safety events across diagnosis fields. RESULTS: Among the participating countries, increasing the number of diagnosis fields was not associated with any overall increase in PSI rates. However, high proportions of PSI-related diagnoses appeared beyond the sixth secondary diagnosis field. The distribution of three PSI-related ICD codes was similar in California and Florida: 89-90% of central venous catheter infections and 97-99% of retained foreign bodies and accidental punctures or lacerations were captured within 15 secondary diagnosis fields. CONCLUSIONS: Six to nine secondary diagnosis fields are inadequate for comparing complication rates using hospital administrative data; at least 15 (and perhaps more with ICD-11) are recommended to fully characterize clinical outcomes. Increasing the number of fields should improve the international and intra-national comparability of data for epidemiologic and health services research, utilization analyses and quality of care assessment.
Resumo:
Achieving a high degree of dependability in complex macro-systems is challenging. Because of the large number of components and numerous independent teams involved, an overview of the global system performance is usually lacking to support both design and operation adequately. A functional failure mode, effects and criticality analysis (FMECA) approach is proposed to address the dependability optimisation of large and complex systems. The basic inductive model FMECA has been enriched to include considerations such as operational procedures, alarm systems. environmental and human factors, as well as operation in degraded mode. Its implementation on a commercial software tool allows an active linking between the functional layers of the system and facilitates data processing and retrieval, which enables to contribute actively to the system optimisation. The proposed methodology has been applied to optimise dependability in a railway signalling system. Signalling systems are typical example of large complex systems made of multiple hierarchical layers. The proposed approach appears appropriate to assess the global risk- and availability-level of the system as well as to identify its vulnerabilities. This enriched-FMECA approach enables to overcome some of the limitations and pitfalls previously reported with classical FMECA approaches.
Resumo:
In 1980 the World Health Organization declared that smallpox was eradicated from the world, and routine smallpox vaccination was discontinued. Nevertheless, samples of the smallpox virus (variola virus) were retained for research purposes, not least because of fears that terrorist groups or rogue states might also have kept samples in order to develop a bioweapon. Variola virus represents an effective bioweapon because it is associated with high morbidity and mortality and is highly contagious. Since September 11, 2001, countries around the world have begun to develop policies and preparedness programs to deal with a bioterror attack, including stockpiling of smallpox vaccine. Smallpox vaccine itself may be associated with a number of serious adverse events, which can often be managed with vaccinia immune globulin (VIG). VIG may also be needed as prophylaxis in patients for whom pre-exposure smallpox vaccine is contraindicated (such as those with eczema or pregnant women), although it is currently not licensed in these cases. Two intravenous formulations of VIG (VIGIV Cangene and VIGIV Dynport) have been licensed by the FDA for the management of patients with progressive vaccinia, eczema vaccinatum, severe generalized vaccinia, and extensive body surface involvement or periocular implantation following inadvertent inoculation.
Resumo:
Integrated approaches using different in vitro methods in combination with bioinformatics can (i) increase the success rate and speed of drug development; (ii) improve the accuracy of toxicological risk assessment; and (iii) increase our understanding of disease. Three-dimensional (3D) cell culture models are important building blocks of this strategy which has emerged during the last years. The majority of these models are organotypic, i.e., they aim to reproduce major functions of an organ or organ system. This implies in many cases that more than one cell type forms the 3D structure, and often matrix elements play an important role. This review summarizes the state of the art concerning commonalities of the different models. For instance, the theory of mass transport/metabolite exchange in 3D systems and the special analytical requirements for test endpoints in organotypic cultures are discussed in detail. In the next part, 3D model systems for selected organs--liver, lung, skin, brain--are presented and characterized in dedicated chapters. Also, 3D approaches to the modeling of tumors are presented and discussed. All chapters give a historical background, illustrate the large variety of approaches, and highlight up- and downsides as well as specific requirements. Moreover, they refer to the application in disease modeling, drug discovery and safety assessment. Finally, consensus recommendations indicate a roadmap for the successful implementation of 3D models in routine screening. It is expected that the use of such models will accelerate progress by reducing error rates and wrong predictions from compound testing.
Resumo:
BACKGROUND: Chemotherapy is prescribed according to protocols of several cycles. These protocols include not only therapeutic agents but also adjuvant solvents and inherent supportive care measures. Multiple errors can occur during the prescription, the transmission of documents and the drug delivery processes, and lead to potentially serious consequences. OBJECTIVE: To assess the effect of a computerised physician order entry (CPOE) system on the number of errors in prescription recorded by the centralised chemotherapy unit of a pharmacy service in a university hospital. PATIENTS AND METHODS: Existing chemotherapy protocols were standardised by a multidisciplinary team (composed of a doctor, a pharmacist and a nurse) and a CPOE system was developed from a File Maker Pro database. Chemotherapy protocols were progressively introduced into the CPOE system. The effect of the system on prescribing errors was measured over 15 months before and 21 months after starting computerised protocol prescription. Errors were classified as major (dosage and drug name) and minor (volume or type of infusion solution). RESULTS: Before computerisation, 141 errors were recorded for 940 prescribed chemotherapy regimens (15%). After introduction of the CPOE system, 75 errors were recorded for 1505 prescribed chemotherapy regimens (5%). Of these errors, 69 (92%) were recorded in prescriptions that did not use a computerised protocol. A dramatic decrease in the number of errors was noticeable when 50% of the chemotherapy protocols were prescribed through the CPOE system. CONCLUSION: Errors in chemotherapy prescription nearly disappeared after implementation of CPOE. The safety of chemotherapy prescription was markedly improved.
Resumo:
In this review, we first summarize the structure and properties of biological membranes and the routes of passive drug transfer through physiological barriers. Lipophilicity is then introduced in terms of the intermolecular interactions it encodes. Finally, lipophilicity indices from isotropic solvent systems and from anisotropic membrane-like systems are discussed for their capacity to predict passive drug permeation across biological membranes such as the intestinal epithelium, the blood-brain barrier (BBB) or the skin. The broad evidence presented here shows that beyond the predictive power of lipophilicity parameters, the various intermolecular forces they encode allow a mechanistic interpretation of passive drug permeation.
Resumo:
Evolution of the Red Sea/Gulf of Suez and the Central Atlantic rift systems shows that an initial, transtensive rifting phase, affecting a broad area around the future zone of crustal separation, was followed by a pre-oceanic rifting phase during which extensional strain was concentrated on the axial rift zone. This caused lateral graben systems to become inactive and they evolved into rift-rim basins. The transtensive phase of diffuse crustal extension is recognized in many intra-continental rifts. If controlling stress systems relax, these rifts abort and develop into palaeorifts. If controlling stress systems persist, transtensive rift systems can enter the pre-oceanic rifting stage, during which the rift zone narrows and becomes asymmetric as a consequence of simple-shear deformation at shallow crustal levels and pure shear deformation at lower crustal and mantle-lithospheric levels. Preceding crustal separation, extensional denudation of the lithospheric mantle is possible. Progressive lithospheric attenuation entails updoming of the asthenosphere and thermal doming of the rift shoulders. Their uplift provides a major clastic source for the rift basins and the lateral rift-rim basins. Their stratigraphic record provides a sensitive tool for dating the rift shoulder uplift. Asymmetric rifting leads to the formation of asymmetric continental margins, corresponding in a simple-shear model to an upper plate and a conjugate lower plate margin, as seen in the Central Atlantic passive margins of the United States and Morocco. This rifting model can be successfully applied to the analysis of the Alpine Tethys palaeo-margins (such as Rif and the Western Alps).
Resumo:
OBJECTIVE: This study aimed to survey current practices in European epilepsy monitoring units (EMUs) with emphasis on safety issues. METHODS: A 37-item questionnaire investigating characteristics and organization of EMUs, including measures for prevention and management of seizure-related serious adverse events (SAEs), was distributed to all identified European EMUs plus one located in Israel (N=150). RESULTS: Forty-eight (32%) EMUs, located in 18 countries, completed the questionnaire. Epilepsy monitoring unit beds are 1-2 in 43%, 3-4 in 34%, and 5-6 in 19% of EMUs; staff physicians are 1-2 in 32%, 3-4 in 34%, and 5-6 in 19% of EMUs. Personnel operating in EMUs include epileptologists (in 69% of EMUs), clinical neurophysiologists trained in epilepsy (in 46% of EMUs), child neurologists (in 35% of EMUs), neurology and clinical neurophysiology residents (in 46% and in 8% of EMUs, respectively), and neurologists not trained in epilepsy (in 27% of EMUs). In 20% of EMUs, patients' observation is only intermittent or during the daytime and primarily carried out by neurophysiology technicians and/or nurses (in 71% of EMUs) or by patients' relatives (in 40% of EMUs). Automatic detection systems for seizures are used in 15%, for body movements in 8%, for oxygen desaturation in 33%, and for ECG abnormalities in 17% of EMUs. Protocols for management of acute seizures are lacking in 27%, of status epilepticus in 21%, and of postictal psychoses in 87% of EMUs. Injury prevention consists of bed protections in 96% of EMUs, whereas antisuffocation pillows are employed in 21%, and environmental protections in monitoring rooms and in bathrooms are implemented in 38% and in 25% of EMUs, respectively. The most common SAEs were status epilepticus reported by 79%, injuries by 73%, and postictal psychoses by 67% of EMUs. CONCLUSIONS: All EMUs have faced different types of SAEs. Wide variation in practice patterns and lack of protocols and of precautions to ensure patients' safety might promote the occurrence and severity of SAEs. Our findings highlight the need for standardized and shared protocols for an effective and safe management of patients in EMUs.
Resumo:
Early warning systems (EWSs) rely on the capacity to forecast a dangerous event with a certain amount of advance by defining warning criteria on which the safety of the population will depend. Monitoring of landslides is facilitated by new technologies, decreasing prices and easier data processing. At the same time, predicting the onset of a rapid failure or the sudden transition from slow to rapid failure and subsequent collapse, and its consequences is challenging for scientists that must deal with uncertainties and have limited tools to do so. Furthermore, EWS and warning criteria are becoming more and more a subject of concern between technical experts, researchers, stakeholders and decision makers responsible for the activation, enforcement and approval of civil protection actions. EWSs imply also a sharing of responsibilities which is often averted by technical staff, managers of technical offices and governing institutions. We organized the First International Workshop on Warning Criteria for Active Slides (IWWCAS) to promote sharing and networking among members from specialized institutions and relevant experts of EWS. In this paper, we summarize the event to stimulate discussion and collaboration between organizations dealing with the complex task of managing hazard and risk related to active slides.