2 resultados para parentheses
em Université de Lausanne, Switzerland
Resumo:
PURPOSE: The purpose of this study was to study the pharmacokinetics of irinotecan injected intravenously, intra-arterially, or loaded onto a delivery platform. MATERIAL AND METHODS: Fifty-four New Zealand White rabbits with VX2 liver tumor, divided in 3 groups of 17 rabbits, each received irinotecan either by intravenous (IV) route, intra-arterial hepatic (IA) route, or loaded on drug-eluting beads (DEBIRI). Animals were killed at 1, 6, and 24 h. Irinotecan and SN-38 concentrations were measured at different time points in serum, tumor, and normal liver. RESULTS: Twelve milligrams of irinotecan were injected IV and IA, whereas 6-16.5 mg were injected loaded onto DEBIRI. Normalized serum irinotecan reached a peak of 333 ng/ml (range 198.8-502.5) for IV, 327.1 ng/ml (range 277.1-495.6) for IA, and 189.7 ng/ml (range 111.1-261.9) for DEBIRI (P < 0.001) delivery. The area-under-the-curve value from 10 to 60 min of serum irinotecan concentration was significantly lower for DEBIRI (P = 0.0009). Tumor irinotecan levels for IV, IA, and DEBIRI (in ng/200 mg of tissue followed by ranges in parentheses) were, respectively, 23.6 (0.3-24.9), 36.5 (7.7-1914.1), and 20.2 (2.9-319) at 1 h; 4.2 (1-27.9), 99.3 (46.6-159.5), and 42.1 (11.3-189) at 6 h; and 2.7 (2.5-6.9), 18.3 (1.5-369.1), and 174.4 (3.4-5147.3) at 24 h (P = 0.02). At 24 h, tumor necrosis was 25% (10-30), 60% (40-91.25), and 95% (76.25-95) for IV, IA, and DEBIRI, respectively (P = 0.03). CONCLUSION: Compared with IV or IA, DEBIRI induces lower early serum levels of irinotecan, a high and prolonged intratumoral level of irinotecan, and a greater rate of tumor necrosis at 24 h. Further evaluation of the clinical benefit of DEBIRI is warranted.
Resumo:
The impact of depressed neonatal cerebral oxidative phosphorylation for diagnosing the severity of perinatal asphyxia was estimated by correlating the concentrations of phosphocreatine (PCr) and ATP as determined by magnetic resonance spectroscopy with the degree of hypoxic-ischemic encephalopathy (HIE) in 23 asphyxiated term neonates. Ten healthy age-matched neonates served as controls. In patients, the mean concentrations +/- SD of PCr and ATP were 0.99 +/- 0.46 mmol/L (1.6 +/- 0.2 mmol/L) and 0.99 +/- 0.35 mmol/L (1.7 +/- 0.2 mmol/L), respectively (normal values in parentheses). [PCr] and [ATP] correlated significantly with the severity of HIE (r = 0.85 and 0.9, respectively, p < 0.001), indicating that the neonatal encephalopathy is the clinical manifestation of a marred brain energy metabolism. Neurodevelopmental outcome was evaluated in 21 children at 3, 9, and 18 mo. Seven infants had multiple impairments, five were moderately handicapped, five had only mild symptoms, and four were normal. There was a significant correlation between the cerebral concentrations of PCr or ATP at birth and outcome (r = 0.8, p < 0.001) and between the degree of neonatal neurologic depression and outcome (r = 0.7). More important, the outcome of neonates with moderate HIE could better be predicted with information from quantitative 31P magnetic resonance spectroscopy than from neurologic examinations. In general, the accuracy of outcome predictability could significantly be increased by adding results from 31P magnetic resonance spectroscopy to the neonatal neurologic score, but not vice versa. No correlation with outcome was found for other perinatal risk factors, including Apgar score.