2 resultados para p-n junctions
em Université de Lausanne, Switzerland
Resumo:
Myotonic dystrophy Type 1 (DM-1) is caused by abnormal expansion of a (CTG) repeat located in the DM protein kinase gene. Respiratory problems have long been recognized to be a major feature of this disorder. Because respiratory failure can be associated with dysfunction of phrenic nerves and diaphragm muscle, we examined the diaphragm and respiratory neural network in transgenic mice carrying the human genomic DM-1 region with expanded repeats of more than 300 CTG, a valid model of the human disease. Morphologic and morphometric analyses revealed distal denervation of diaphragm neuromuscular junctions in DM-1 transgenic mice indicated by a decrease in the size and shape complexity of end-plates and a reduction in the concentration of acetyl choline receptors on the postsynaptic membrane. More importantly, there was a significant reduction in numbers of unmyelinated, but not of myelinated, fibers in DM-1 phrenic nerves; no morphologic alternations of the nerves or loss of neuronal cells were detected in medullary respiratory centers or cervical phrenic motor neurons. Because neuromuscular junctions are involved in action potential transmission and the afferent phrenic unmyelinated fibers control the inspiratory activity, our results suggest that the respiratory impairment associated with DM-1 may be partially due to pathologic alterations in neuromuscular junctions and phrenic nerves.
Resumo:
The emergence of multicellular organisms has necessitated the development of mechanisms for interactions between adjacent and distant cells. A consistent feature of this network is the expression of gap junction channels between the secretory cells of all glands so far investigated in vertebrates. Here, we reviewed the distribution of the gap junctions proteins, named connexins, in a few mammalian glands, and discussed the recent evidence pointing to the participation of these proteins in the functioning of endocrine and exocrine cells. Specifically, available data indicate the importance of gap junctions for the proper control of glucose-induced insulin secretion. Understanding the functions of beta-cell connexins are crucial for the engineering of surrogate cells, which is necessary for implementation of a replacement cell therapy in diabetic patients.