5 resultados para oxygen sensor

em Université de Lausanne, Switzerland


Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: To test the accuracy of a new pulse oximeter sensor based on transmittance and reflectance. This sensor makes transillumination of tissue unnecessary and allows measurements on the hand, forearm, foot, and lower limb. DESIGN: Prospective, open, nonrandomized criterion standard study. SETTING: Neonatal intensive care unit, tertiary care center. PATIENTS: Sequential sample of 54 critically ill neonates (gestational age 27 to 42 wks; postnatal age 1 to 28 days) with arterial catheters in place. MEASUREMENTS AND MAIN RESULTS: A total of 99 comparisons between pulse oximetry and arterial saturation were obtained. Comparison of femoral or umbilical arterial blood with transcutaneous measurements on the lower limb (n = 66) demonstrated an excellent correlation (r2 = .96). The mean difference was +1.44% +/- 3.51 (SD) % (range -11% to +8%). Comparison of the transcutaneous values with the radial artery saturation from the corresponding upper limb (n = 33) revealed a correlation coefficient of 0.94 with a mean error of +0.66% +/- 3.34% (range -6% to +7%). The mean difference between noninvasive and invasive measurements was least with the test sensor on the hand, intermediate on the calf and arm, and greatest on the foot. The mean error and its standard deviation were slightly larger for arterial saturation values < 90% than for values > or = 90%. CONCLUSION: Accurate pulse oximetry saturation can be acquired from the hand, forearm, foot, and calf of critically ill newborns using this new sensor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Whereas during the last few years handling of the transcutaneous PO2 (tcPO2) and PCO2 (tcPCO2) sensor has been simplified, the high electrode temperature and the short application time remain major drawbacks. In order to determine whether the application of a topical metabolic inhibitor allows reliable measurement at a sensor temperature of 42 degrees C for a period of up to 12 h, we performed a prospective, open, nonrandomized study in a sequential sample of 20 critically ill neonates. A total of 120 comparisons (six repeated measurements per patient) between arterial and transcutaneous values were obtained. Transcutaneous values were measured with a control sensor at 44 degrees C (conventional contact medium, average application time 3 h) and a test sensor at 42 degrees C (Eugenol solution, average application time 8 h). Comparison of tcPO2 and PaO2 at 42 degrees C (Eugenol solution) showed a mean difference of +0.16 kPa (range +1.60 to -2.00 kPa), limits of agreement +1.88 and -1.56 kPa. Comparison of tcPO2 and PaO2 at 44 degrees C (control sensor) revealed a mean difference of +0.02 kPa (range +2.60 to -1.90 kPa), limits of agreement +2.12 and -2.08 kPa. Comparison of tcPCO2 and PaCO2 at 42 degrees C (Eugenol solution) showed a mean difference of +0.91 (range +2.30 to +0.10 kPa), limits of agreement +2.24 and -0.42 kPa. Comparison of tcPCO2 and PaCO2 at 44 degrees C (control sensor) revealed a mean difference of +0.63 kPa (range 1.50 to -0.30 kPa), limits of agreement +1.73 and -0.47 kPa. CONCLUSION: Our results show that the use of an Eugenol solution allows reliable measurement of tcPO2 at a heating temperature of 42 degrees C; the application time can be prolongued up to a maximum of 12 h without aggravating the skin lesions. The performance of the tcPCO2 monitor was slightly worse at 42 degrees C than at 44 degrees C suggesting that for the Eugenol solution the metabolic offset should be corrected.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interleukin-1beta (IL-1beta), reactive oxygen species (ROS), and thioredoxin-interacting protein (TXNIP) are all implicated in the pathogenesis of type 2 diabetes mellitus (T2DM). Here we review mechanisms directing IL-1beta production and its pathogenic role in islet dysfunction during chronic hyperglycemia. In doing so, we integrate previously disparate disease-driving mechanisms for IL-1beta, ROS, and TXNIP in T2DM into one unifying model in which the NLRP3 inflammasome plays a central role. The NLRP3 inflammasome also drives IL-1beta maturation and secretion in another disease of metabolic dysregulation, gout. Thus, we propose that the NLRP3 inflammasome contributes to the pathogenesis of T2DM and gout by functioning as a sensor for metabolic stress.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

IMPLICATIONS: A new combined ear sensor was tested for accuracy in 20 critically ill children. It provides noninvasive and continuous monitoring of arterial oxygen saturation, arterial carbon dioxide tension, and pulse rate. The sensor proved to be clinically accurate in the tested range.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We evaluated a new combined sensor for monitoring transcutaneous carbon dioxide tension (PtcCO2) and oxygen tension (PtcO2) in 20 critically ill newborn infants. Arterial oxygen tension (PaO2) ranged from 16 to 126 torr and arterial carbon dioxide tension (PaCO2) from 14 to 72 torr. Linear correlation analysis (100 paired values) of PtcO2 versus PaO2 showed an r value of 0.75 with a regression equation of PtcO2 = 8.59 + 0.905 (PaO2), while PtcCO2 versus PaCO2 revealed a correlation coefficient of r = 0.89 with an equation of PtcCO2 = 2.53 + 1.06 (PaCO2). The bias between PaO2 and PtcO2 was -2.8 with a precision of +/- 16.0 torr (range, -87 to +48 torr). The bias between PaCO2 and PtcCO2 was -5.1 with a precision of +/- 7.3 torr (range, -34 to +8 torr). The transcutaneous sensor detected 83% of hypoxia (PaO2 less than 45 torr), 75% of hyperoxia (PaO2 greater than 90 torr), 45% of hypocapnia (PaCO2 less than 35 torr), and 96% of hypercapnia (PaCO2 greater than 45 torr). We conclude that the reliability of the combined transcutaneous PO2 and PCO2 monitor in sick neonates is good for detecting hypercapnia, fair for hypoxia and hyperoxia, but poor for hypocapnia. It is an improvement in that it spares available skin surface and requires less handling, but it appears to be slightly less accurate than the single electrodes.