4 resultados para origins and early development of traditional Chinese architecture
em Université de Lausanne, Switzerland
Resumo:
In this review, we discuss a paradigm whereby changes in the intragraft microenvironment promote or sustain the development of chronic allograft rejection. A key feature of this model involves the microvasculature including (a) endothelial cell (EC) destruction, and (b) EC proliferation, both of which result from alloimmune leukocyte- and/or alloantibody-induced responses. These changes in the microvasculature likely create abnormal blood flow patterns and thus promote local tissue hypoxia. Another feature of the chronic rejection microenvironment involves the overexpression of vascular endothelial growth factor (VEGF). VEGF stimulates EC activation and proliferation and it has potential to sustain inflammation via direct interactions with leukocytes. In this manner, VEGF may promote ongoing tissue injury. Finally, we review how these events can be targeted therapeutically using mTOR inhibitors. EC activation and proliferation as well as VEGF-VEGFR interactions require PI-3K/Akt/mTOR intracellular signaling. Thus, agents that inhibit this signaling pathway within the graft may also target the progression of chronic rejection and thus promote long-term graft survival.
Resumo:
Organs developing as appendages of the ectoderm are initiated from epithelial thickenings called placodes. Their formation is regulated by interactions between the ectoderm and underlying mesenchyme, and several signalling molecules have been implicated as activators or inhibitors of placode formation. Ectodysplasin (Eda) is a unique signalling molecule in the tumour necrosis factor family that, together with its receptor Edar, is necessary for normal development of ectodermal organs both in humans and mice. We have shown previously that overexpression of the Eda-A1 isoform in transgenic mice stimulates the formation of several ectodermal organs. In the present study, we have analysed the formation and morphology of placodes using in vivo and in vitro models in which both the timing and amount of Eda-A1 applied could be varied. The hair and tooth placodes of K14-Eda-A1 transgenic embryos were enlarged, and extra placodes developed from the dental lamina and mammary line. Exposure of embryonic skin to Eda-A1 recombinant protein in vitro stimulated the growth and fusion of placodes. However, it did not accelerate the initiation of the first wave of hair follicles giving rise to the guard hairs. Hence, the function of Eda-A1 appears to be downstream of the primary inductive signal required for placode initiation during skin patterning. Analysis of BrdU incorporation indicated that the formation of the epithelial thickening in early placodes does not involve increased cell proliferation and also that the positive effect of Eda-A1 on placode expansion is not a result of increased cell proliferation. Taken together, our results suggest that Eda-A1 signalling promotes placodal cell fate during early development of ectodermal organs.
Resumo:
BACKGROUND: Early detection and treatment of colorectal adenomatous polyps (AP) and colorectal cancer (CRC) is associated with decreased mortality for CRC. However, accurate, non-invasive and compliant tests to screen for AP and early stages of CRC are not yet available. A blood-based screening test is highly attractive due to limited invasiveness and high acceptance rate among patients. AIM: To demonstrate whether gene expression signatures in the peripheral blood mononuclear cells (PBMC) were able to detect the presence of AP and early stages CRC. METHODS: A total of 85 PBMC samples derived from colonoscopy-verified subjects without lesion (controls) (n = 41), with AP (n = 21) or with CRC (n = 23) were used as training sets. A 42-gene panel for CRC and AP discrimination, including genes identified by Digital Gene Expression-tag profiling of PBMC, and genes previously characterised and reported in the literature, was validated on the training set by qPCR. Logistic regression analysis followed by bootstrap validation determined CRC- and AP-specific classifiers, which discriminate patients with CRC and AP from controls. RESULTS: The CRC and AP classifiers were able to detect CRC with a sensitivity of 78% and AP with a sensitivity of 46% respectively. Both classifiers had a specificity of 92% with very low false-positive detection when applied on subjects with inflammatory bowel disease (n = 23) or tumours other than CRC (n = 14). CONCLUSION: This pilot study demonstrates the potential of developing a minimally invasive, accurate test to screen patients at average risk for colorectal cancer, based on gene expression analysis of peripheral blood mononuclear cells obtained from a simple blood sample.
Resumo:
The adult hippocampus generates functional dentate granule cells (GCs) that release glutamate onto target cells in the hilus and cornus ammonis (CA)3 region, and receive glutamatergic and γ-aminobutyric acid (GABA)ergic inputs that tightly control their spiking activity. The slow and sequential development of their excitatory and inhibitory inputs makes them particularly relevant for information processing. Although they are still immature, new neurons are recruited by afferent activity and display increased excitability, enhanced activity-dependent plasticity of their input and output connections, and a high rate of synaptogenesis. Once fully mature, new GCs show all the hallmarks of neurons generated during development. In this review, we focus on how developing neurons remodel the adult dentate gyrus and discuss key aspects that illustrate the potential of neurogenesis as a mechanism for circuit plasticity and function.