18 resultados para optimization under uncertainty
em Université de Lausanne, Switzerland
Resumo:
This study deals with the psychological processes underlying the selection of appropriate strategy during exploratory behavior. A new device was used to assess sexual dimorphisms in spatial abilities that do not depend on spatial rotation, map reading or directional vector extraction capacities. Moreover, it makes it possible to investigate exploratory behavior as a specific response to novelty that trades off risk and reward. Risk management under uncertainty was assessed through both spontaneous searching strategies and signal detection capacities. The results of exploratory behavior, detection capacities, and decision-making strategies seem to indicate that women's exploratory behavior is based on risk-reducing behavior while men behavior does not appear to be influenced by this variable. This difference was interpreted as a difference in information processing modifying beliefs concerning the likelihood of uncertain events, and therefore influencing risk evaluation.
Resumo:
The article is intended to improve our understanding of the reasons underlying the intellectual migration of scientists from well-known cognitive domains to nascent scientific fields. To that purpose we present, first, a number of findings from the sociology of science that give different insights about this phenomenon. We then attempt to bring some of these insights together under the conceptual roof of an actor-based approach linking expected utility and diffusion theory. Intellectual migration is regarded as the rational choice of scientists who decide under uncertainty and on the base of a number of decision-making variables, which define probabilities, costs, and benefits of the migration.
Resumo:
Le travail d'un(e) expert(e) en science forensique exige que ce dernier (cette dernière) prenne une série de décisions. Ces décisions sont difficiles parce qu'elles doivent être prises dans l'inévitable présence d'incertitude, dans le contexte unique des circonstances qui entourent la décision, et, parfois, parce qu'elles sont complexes suite à de nombreuse variables aléatoires et dépendantes les unes des autres. Etant donné que ces décisions peuvent aboutir à des conséquences sérieuses dans l'administration de la justice, la prise de décisions en science forensique devrait être soutenue par un cadre robuste qui fait des inférences en présence d'incertitudes et des décisions sur la base de ces inférences. L'objectif de cette thèse est de répondre à ce besoin en présentant un cadre théorique pour faire des choix rationnels dans des problèmes de décisions rencontrés par les experts dans un laboratoire de science forensique. L'inférence et la théorie de la décision bayésienne satisfont les conditions nécessaires pour un tel cadre théorique. Pour atteindre son objectif, cette thèse consiste de trois propositions, recommandant l'utilisation (1) de la théorie de la décision, (2) des réseaux bayésiens, et (3) des réseaux bayésiens de décision pour gérer des problèmes d'inférence et de décision forensiques. Les résultats présentent un cadre uniforme et cohérent pour faire des inférences et des décisions en science forensique qui utilise les concepts théoriques ci-dessus. Ils décrivent comment organiser chaque type de problème en le décomposant dans ses différents éléments, et comment trouver le meilleur plan d'action en faisant la distinction entre des problèmes de décision en une étape et des problèmes de décision en deux étapes et en y appliquant le principe de la maximisation de l'utilité espérée. Pour illustrer l'application de ce cadre à des problèmes rencontrés par les experts dans un laboratoire de science forensique, des études de cas théoriques appliquent la théorie de la décision, les réseaux bayésiens et les réseaux bayésiens de décision à une sélection de différents types de problèmes d'inférence et de décision impliquant différentes catégories de traces. Deux études du problème des deux traces illustrent comment la construction de réseaux bayésiens permet de gérer des problèmes d'inférence complexes, et ainsi surmonter l'obstacle de la complexité qui peut être présent dans des problèmes de décision. Trois études-une sur ce qu'il faut conclure d'une recherche dans une banque de données qui fournit exactement une correspondance, une sur quel génotype il faut rechercher dans une banque de données sur la base des observations faites sur des résultats de profilage d'ADN, et une sur s'il faut soumettre une trace digitale à un processus qui compare la trace avec des empreintes de sources potentielles-expliquent l'application de la théorie de la décision et des réseaux bayésiens de décision à chacune de ces décisions. Les résultats des études des cas théoriques soutiennent les trois propositions avancées dans cette thèse. Ainsi, cette thèse présente un cadre uniforme pour organiser et trouver le plan d'action le plus rationnel dans des problèmes de décisions rencontrés par les experts dans un laboratoire de science forensique. Le cadre proposé est un outil interactif et exploratoire qui permet de mieux comprendre un problème de décision afin que cette compréhension puisse aboutir à des choix qui sont mieux informés. - Forensic science casework involves making a sériés of choices. The difficulty in making these choices lies in the inévitable presence of uncertainty, the unique context of circumstances surrounding each décision and, in some cases, the complexity due to numerous, interrelated random variables. Given that these décisions can lead to serious conséquences in the admin-istration of justice, forensic décision making should be supported by a robust framework that makes inferences under uncertainty and décisions based on these inferences. The objective of this thesis is to respond to this need by presenting a framework for making rational choices in décision problems encountered by scientists in forensic science laboratories. Bayesian inference and décision theory meets the requirements for such a framework. To attain its objective, this thesis consists of three propositions, advocating the use of (1) décision theory, (2) Bayesian networks, and (3) influence diagrams for handling forensic inference and décision problems. The results present a uniform and coherent framework for making inferences and décisions in forensic science using the above theoretical concepts. They describe how to organize each type of problem by breaking it down into its différent elements, and how to find the most rational course of action by distinguishing between one-stage and two-stage décision problems and applying the principle of expected utility maximization. To illustrate the framework's application to the problems encountered by scientists in forensic science laboratories, theoretical case studies apply décision theory, Bayesian net-works and influence diagrams to a selection of différent types of inference and décision problems dealing with différent catégories of trace evidence. Two studies of the two-trace problem illustrate how the construction of Bayesian networks can handle complex inference problems, and thus overcome the hurdle of complexity that can be present in décision prob-lems. Three studies-one on what to conclude when a database search provides exactly one hit, one on what genotype to search for in a database based on the observations made on DNA typing results, and one on whether to submit a fingermark to the process of comparing it with prints of its potential sources-explain the application of décision theory and influ¬ence diagrams to each of these décisions. The results of the theoretical case studies support the thesis's three propositions. Hence, this thesis présents a uniform framework for organizing and finding the most rational course of action in décision problems encountered by scientists in forensic science laboratories. The proposed framework is an interactive and exploratory tool for better understanding a décision problem so that this understanding may lead to better informed choices.
Resumo:
Summary Throughout my thesis, I elaborate on how real and financing frictions affect corporate decision making under uncertainty, and I explore how firms time their investment and financing decisions given such frictions. While the macroeconomics literature has focused on the impact of real frictions on investment decisions assuming all equity financed firms, the financial economics literature has mainly focused on the study of financing frictions. My thesis therefore assesses the join interaction of real and financing frictions in firms' dynamic investment and financing decisions. My work provides a rationale for the documented poor empirical performance of neoclassical investment models based on the joint effect of real and financing frictions on investment. A major observation relies in how the infrequency of corporate decisions may affect standard empirical tests. My thesis suggests that the book to market sorts commonly used in the empirical asset pricing literature have economic content, as they control for the lumpiness in firms' optimal investment policies. My work also elaborates on the effects of asymmetric information and strategic interaction on firms' investment and financing decisions. I study how firms time their decision to raise public equity when outside investors lack information about their future investment prospects. I derive areal-options model that predicts either cold or hot markets for new stock issues conditional on adverse selection, and I provide a rational approach to study jointly the market timing of corporate decisions and announcement effects in stock returns. My doctoral dissertation therefore contributes to our understanding of how under real and financing frictions may bias standard empirical tests, elaborates on how adverse selection may induce hot and cold markets in new issues' markets, and suggests how the underlying economic behaviour of firms may induce alternative patterns in stock prices.
Resumo:
Unlike the evaluation of single items of scientific evidence, the formal study and analysis of the jointevaluation of several distinct items of forensic evidence has to date received some punctual, ratherthan systematic, attention. Questions about the (i) relationships among a set of (usually unobservable)propositions and a set of (observable) items of scientific evidence, (ii) the joint probative valueof a collection of distinct items of evidence as well as (iii) the contribution of each individual itemwithin a given group of pieces of evidence still represent fundamental areas of research. To somedegree, this is remarkable since both, forensic science theory and practice, yet many daily inferencetasks, require the consideration of multiple items if not masses of evidence. A recurrent and particularcomplication that arises in such settings is that the application of probability theory, i.e. the referencemethod for reasoning under uncertainty, becomes increasingly demanding. The present paper takesthis as a starting point and discusses graphical probability models, i.e. Bayesian networks, as frameworkwithin which the joint evaluation of scientific evidence can be approached in some viable way.Based on a review of existing main contributions in this area, the article here aims at presentinginstances of real case studies from the author's institution in order to point out the usefulness andcapacities of Bayesian networks for the probabilistic assessment of the probative value of multipleand interrelated items of evidence. A main emphasis is placed on underlying general patterns of inference,their representation as well as their graphical probabilistic analysis. Attention is also drawnto inferential interactions, such as redundancy, synergy and directional change. These distinguish thejoint evaluation of evidence from assessments of isolated items of evidence. Together, these topicspresent aspects of interest to both, domain experts and recipients of expert information, because theyhave bearing on how multiple items of evidence are meaningfully and appropriately set into context.
Resumo:
At a time when disciplined inference and decision making under uncertainty represent common aims to participants in legal proceedings, the scientific community is remarkably heterogenous in its attitudes as to how these goals ought to be achieved. Probability and decision theory exert a considerable influence, and we think by all reason rightly do so, but they go against a mainstream of thinking that does not embrace-or is not aware of-the 'normative' character of this body of theory. It is normative, in the sense understood in this article, in that it prescribes particular properties, typically (logical) coherence, to which reasoning and decision making ought to conform. Disregarding these properties can result in diverging views which are occasionally used as an argument against the theory, or as a pretext for not following it. Typical examples are objections according to which people, both in everyday life but also individuals involved at various levels in the judicial process, find the theory difficult to understand and to apply. A further objection is that the theory does not reflect how people actually behave. This article aims to point out in what sense these examples misinterpret the analytical framework in its normative perspective. Through examples borrowed mostly from forensic science contexts, it is argued that so-called intuitive scientific attitudes are particularly liable to such misconceptions. These attitudes are contrasted with a statement of the actual liberties and constraints of probability and decision theory and the view according to which this theory is normative.
Resumo:
In this commentary, we argue that the term 'prediction' is overly used when in fact, referring to foundational writings of de Finetti, the correspondent term should be inference. In particular, we intend (i) to summarize and clarify relevant subject matter on prediction from established statistical theory, and (ii) point out the logic of this understanding with respect practical uses of the term prediction. Written from an interdisciplinary perspective, associating statistics and forensic science as an example, this discussion also connects to related fields such as medical diagnosis and other areas of application where reasoning based on scientific results is practiced in societal relevant contexts. This includes forensic psychology that uses prediction as part of its vocabulary when dealing with matters that arise in the course of legal proceedings.
Resumo:
Substantial investment in climate change research has led to dire predictions of the impacts and risks to biodiversity. The Intergovernmental Panel on Climate Change fourth assessment report(1) cites 28,586 studies demonstrating significant biological changes in terrestrial systems(2). Already high extinction rates, driven primarily by habitat loss, are predicted to increase under climate change(3-6). Yet there is little specific advice or precedent in the literature to guide climate adaptation investment for conserving biodiversity within realistic economic constraints(7). Here we present a systematic ecological and economic analysis of a climate adaptation problem in one of the world's most species-rich and threatened ecosystems: the South African fynbos. We discover a counterintuitive optimal investment strategy that switches twice between options as the available adaptation budget increases. We demonstrate that optimal investment is nonlinearly dependent on available resources, making the choice of how much to invest as important as determining where to invest and what actions to take. Our study emphasizes the importance of a sound analytical framework for prioritizing adaptation investments(4). Integrating ecological predictions in an economic decision framework will help support complex choices between adaptation options under severe uncertainty. Our prioritization method can be applied at any scale to minimize species loss and to evaluate the robustness of decisions to uncertainty about key assumptions.
Resumo:
Restriction site-associated DNA sequencing (RADseq) provides researchers with the ability to record genetic polymorphism across thousands of loci for nonmodel organisms, potentially revolutionizing the field of molecular ecology. However, as with other genotyping methods, RADseq is prone to a number of sources of error that may have consequential effects for population genetic inferences, and these have received only limited attention in terms of the estimation and reporting of genotyping error rates. Here we use individual sample replicates, under the expectation of identical genotypes, to quantify genotyping error in the absence of a reference genome. We then use sample replicates to (i) optimize de novo assembly parameters within the program Stacks, by minimizing error and maximizing the retrieval of informative loci; and (ii) quantify error rates for loci, alleles and single-nucleotide polymorphisms. As an empirical example, we use a double-digest RAD data set of a nonmodel plant species, Berberis alpina, collected from high-altitude mountains in Mexico.
Resumo:
This observational study analyzed imatinib pharmacokinetics and response in 2478 chronic myeloid leukemia (CML) patients. Data were obtained through centralized therapeutic drug monitoring (TDM) at median treatment duration of ≥2 years. First, individual initial trough concentrations under 400mg/day imatinib starting dose were estimated. Second, their correlation (C^min(400mg)) with reported treatment response was verified. Low imatinib levels were predicted in young male patients and those receiving P-gp/CYP3A4 inducers. These patients had also lower response rates (7% lower 18-months MMR in male, 17% lower 1-year CCyR in young patients, Kaplan-Meier estimates). Time-point independent multivariate regression confirmed a correlation of individual C^min(400mg) with response and adverse events. Possibly due to confounding factors (e.g. dose modifications, patient selection bias), the relationship seemed however flatter than previously reported from prospective controlled studies. Nonetheless, these observational results strongly suggest that a subgroup of patients could benefit from early dosage optimization assisted by TDM, because of lower imatinib concentrations and lower response rates.
Quantifying uncertainty: physicians' estimates of infection in critically ill neonates and children.
Resumo:
To determine the diagnostic accuracy of physicians' prior probability estimates of serious infection in critically ill neonates and children, we conducted a prospective cohort study in 2 intensive care units. Using available clinical, laboratory, and radiographic information, 27 physicians provided 2567 probability estimates for 347 patients (follow-up rate, 92%). The median probability estimate of infection increased from 0% (i.e., no antibiotic treatment or diagnostic work-up for sepsis), to 2% on the day preceding initiation of antibiotic therapy, to 20% at initiation of antibiotic treatment (P<.001). At initiation of treatment, predictions discriminated well between episodes subsequently classified as proven infection and episodes ultimately judged unlikely to be infection (area under the curve, 0.88). Physicians also showed a good ability to predict blood culture-positive sepsis (area under the curve, 0.77). Treatment and testing thresholds were derived from the provided predictions and treatment rates. Physicians' prognoses regarding the presence of serious infection were remarkably precise. Studies investigating the value of new tests for diagnosis of sepsis should establish that they add incremental value to physicians' judgment.
Resumo:
Restriction site-associated DNA sequencing (RADseq) provides researchers with the ability to record genetic polymorphism across thousands of loci for nonmodel organisms, potentially revolutionizing the field of molecular ecology. However, as with other genotyping methods, RADseq is prone to a number of sources of error that may have consequential effects for population genetic inferences, and these have received only limited attention in terms of the estimation and reporting of genotyping error rates. Here we use individual sample replicates, under the expectation of identical genotypes, to quantify genotyping error in the absence of a reference genome. We then use sample replicates to (i) optimize de novo assembly parameters within the program Stacks, by minimizing error and maximizing the retrieval of informative loci; and (ii) quantify error rates for loci, alleles and single-nucleotide polymorphisms. As an empirical example, we use a double-digest RAD data set of a nonmodel plant species, Berberis alpina, collected from high-altitude mountains in Mexico.
Resumo:
We studied the influence of signal variability on human and model observers for detection tasks with realistic simulated masses superimposed on real patient mammographic backgrounds and synthesized mammographic backgrounds (clustered lumpy backgrounds, CLB). Results under the signal-known-exactly (SKE) paradigm were compared with signal-known-statistically (SKS) tasks for which the observers did not have prior knowledge of the shape or size of the signal. Human observers' performance did not vary significantly when benign masses were superimposed on real images or on CLB. Uncertainty and variability in signal shape did not degrade human performance significantly compared with the SKE task, while variability in signal size did. Implementation of appropriate internal noise components allowed the fit of model observers to human performance.
Resumo:
Individual-as-maximizing agent analogies result in a simple understanding of the functioning of the biological world. Identifying the conditions under which individuals can be regarded as fitness maximizing agents is thus of considerable interest to biologists. Here, we compare different concepts of fitness maximization, and discuss within a single framework the relationship between Hamilton's (J Theor Biol 7: 1-16, 1964) model of social interactions, Grafen's (J Evol Biol 20: 1243-1254, 2007a) formal Darwinism project, and the idea of evolutionary stable strategies. We distinguish cases where phenotypic effects are additive separable or not, the latter not being covered by Grafen's analysis. In both cases it is possible to define a maximand, in the form of an objective function phi(z), whose argument is the phenotype of an individual and whose derivative is proportional to Hamilton's inclusive fitness effect. However, this maximand can be identified with the expression for fecundity or fitness only in the case of additive separable phenotypic effects, making individual-as-maximizing agent analogies unattractive (although formally correct) under general situations of social interactions. We also feel that there is an inconsistency in Grafen's characterization of the solution of his maximization program by use of inclusive fitness arguments. His results are in conflict with those on evolutionary stable strategies obtained by applying inclusive fitness theory, and can be repaired only by changing the definition of the problem.
Resumo:
One of the key emphases of these three essays is to provide practical managerial insight. However, good practical insight, can only be created by grounding it firmly on theoretical and empirical research. Practical experience-based understanding without theoretical grounding remains tacit and cannot be easily disseminated. Theoretical understanding without links to real life remains sterile. My studies aim to increase the understanding of how radical innovation could be generated at large established firms and how it can have an impact on business performance as most businesses pursue innovation with one prime objective: value creation. My studies focus on large established firms with sales revenue exceeding USD $ 1 billion. Usually large established firms cannot rely on informal ways of management, as these firms tend to be multinational businesses operating with subsidiaries, offices, or production facilities in more than one country. I. Internal and External Determinants of Corporate Venture Capital Investment The goal of this chapter is to focus on CVC as one of the mechanisms available for established firms to source new ideas that can be exploited. We explore the internal and external determinants under which established firms engage in CVC to source new knowledge through investment in startups. We attempt to make scholars and managers aware of the forces that influence CVC activity by providing findings and insights to facilitate the strategic management of CVC. There are research opportunities to further understand the CVC phenomenon. Why do companies engage in CVC? What motivates them to continue "playing the game" and keep their active CVC investment status. The study examines CVC investment activity, and the importance of understanding the influential factors that make a firm decide to engage in CVC. The main question is: How do established firms' CVC programs adapt to changing internal conditions and external environments. Adaptation typically involves learning from exploratory endeavors, which enable companies to transform the ways they compete (Guth & Ginsberg, 1990). Our study extends the current stream of research on CVC. It aims to contribute to the literature by providing an extensive comparison of internal and external determinants leading to CVC investment activity. To our knowledge, this is the first study to examine the influence of internal and external determinants on CVC activity throughout specific expansion and contraction periods determined by structural breaks occurring between 1985 to 2008. Our econometric analysis indicates a strong and significant positive association between CVC activity and R&D, cash flow availability and environmental financial market conditions, as well as a significant negative association between sales growth and the decision to engage into CVC. The analysis of this study reveals that CVC investment is highly volatile, as demonstrated by dramatic fluctuations in CVC investment activity over the past decades. When analyzing the overall cyclical CVC period from 1985 to 2008 the results of our study suggest that CVC activity has a pattern influenced by financial factors such as the level of R&D, free cash flow, lack of sales growth, and external conditions of the economy, with the NASDAQ price index as the most significant variable influencing CVC during this period. II. Contribution of CVC and its Interaction with R&D to Value Creation The second essay takes into account the demands of corporate executives and shareholders regarding business performance and value creation justifications for investments in innovation. Billions of dollars are invested in CVC and R&D. However there is little evidence that CVC and its interaction with R&D create value. Firms operating in dynamic business sectors seek to innovate to create the value demanded by changing market conditions, consumer preferences, and competitive offerings. Consequently, firms operating in such business sectors put a premium on finding new, sustainable and competitive value propositions. CVC and R&D can help them in this challenge. Dushnitsky and Lenox (2006) presented evidence that CVC investment is associated with value creation. However, studies have shown that the most innovative firms do not necessarily benefit from innovation. For instance Oyon (2007) indicated that between 1995 and 2005 the most innovative automotive companies did not obtain adequate rewards for shareholders. The interaction between CVC and R&D has generated much debate in the CVC literature. Some researchers see them as substitutes suggesting that firms have to choose between CVC and R&D (Hellmann, 2002), while others expect them to be complementary (Chesbrough & Tucci, 2004). This study explores the interaction that CVC and R&D have on value creation. This essay examines the impact of CVC and R&D on value creation over sixteen years across six business sectors and different geographical regions. Our findings suggest that the effect of CVC and its interaction with R&D on value creation is positive and significant. In dynamic business sectors technologies rapidly relinquish obsolete, consequently firms operating in such business sectors need to continuously develop new sources of value creation (Eisenhardt & Martin, 2000; Qualls, Olshavsky, & Michaels, 1981). We conclude that in order to impact value creation, firms operating in business sectors such as Engineering & Business Services, and Information Communication & Technology ought to consider CVC as a vital element of their innovation strategy. Moreover, regarding the CVC and R&D interaction effect, our findings suggest that R&D and CVC are complementary to value creation hence firms in certain business sectors can be better off supporting both R&D and CVC simultaneously to increase the probability of generating value creation. III. MCS and Organizational Structures for Radical Innovation Incremental innovation is necessary for continuous improvement but it does not provide a sustainable permanent source of competitiveness (Cooper, 2003). On the other hand, radical innovation pursuing new technologies and new market frontiers can generate new platforms for growth providing firms with competitive advantages and high economic margin rents (Duchesneau et al., 1979; Markides & Geroski, 2005; O'Connor & DeMartino, 2006; Utterback, 1994). Interestingly, not all companies distinguish between incremental and radical innovation, and more importantly firms that manage innovation through a one-sizefits- all process can almost guarantee a sub-optimization of certain systems and resources (Davila et al., 2006). Moreover, we conducted research on the utilization of MCS along with radical innovation and flexible organizational structures as these have been associated with firm growth (Cooper, 2003; Davila & Foster, 2005, 2007; Markides & Geroski, 2005; O'Connor & DeMartino, 2006). Davila et al. (2009) identified research opportunities for innovation management and provided a list of pending issues: How do companies manage the process of radical and incremental innovation? What are the performance measures companies use to manage radical ideas and how do they select them? The fundamental objective of this paper is to address the following research question: What are the processes, MCS, and organizational structures for generating radical innovation? Moreover, in recent years, research on innovation management has been conducted mainly at either the firm level (Birkinshaw, Hamel, & Mol, 2008a) or at the project level examining appropriate management techniques associated with high levels of uncertainty (Burgelman & Sayles, 1988; Dougherty & Heller, 1994; Jelinek & Schoonhoven, 1993; Kanter, North, Bernstein, & Williamson, 1990; Leifer et al., 2000). Therefore, we embarked on a novel process-related research framework to observe the process stages, MCS, and organizational structures that can generate radical innovation. This article is based on a case study at Alcan Engineered Products, a division of a multinational company provider of lightweight material solutions. Our observations suggest that incremental and radical innovation should be managed through different processes, MCS and organizational structures that ought to be activated and adapted contingent to the type of innovation that is being pursued (i.e. incremental or radical innovation). More importantly, we conclude that radical can be generated in a systematic way through enablers such as processes, MCS, and organizational structures. This is in line with the findings of Jelinek and Schoonhoven (1993) and Davila et al. (2006; 2007) who show that innovative firms have institutionalized mechanisms, arguing that radical innovation cannot occur in an organic environment where flexibility and consensus are the main managerial mechanisms. They rather argue that radical innovation requires a clear organizational structure and formal MCS.