118 resultados para opinion rich resources
em Université de Lausanne, Switzerland
Resumo:
This work presents geochemistry and structural geology data concerning the low enthalpy geothermal circuits of the Argentera crystalline Massif in northwestern Italian Alps. I n this area some thermal springs (50-60 degreesC), located in the small Bagni di Vinadio village, discharge mixtures made up of a Na-Cl end-member and a Na-SO4 component. The latter is also discharged by the thermal springs of Terme di Valdieri located some kilometres apart within the same tectonic complex. Both end-members share the same meteoric origin and the same reservoir temperature, which is close to 150 degreesC. Explanations are thus required to understand how they reach the surface and how waters of the same origin and circulating in similar rocks can attain such different compositions. Sodium-sulphate waters discharged at both sites, likely represent the common interaction product of meteoric waters with the widespread granitic-migmatitic rocks of the Argentera Massif, whereas Na-CI waters originate through leaching of mineralised cataclastic rocks, which are rich in phyllosilicatic minerals and fluid inclusions, both acting as Cl- sources. Due to the relatively low inferred geothermal gradient of the region, -25C/km, meteoric waters have to descend to depths of 5.5-6 km to attain temperatures of similar to 150 degreesC. These relevant depths can be reached by descending meteoric waters, due to the recent extensional stress field, which allows the development of geothermal circulations at greater depths than in other sectors of the Alps by favouring a greater fractures aperture. The ascent of the thermal waters rakes place along brittle shear zones. In both sites, the thermal waters emerge at the bottoms of the valleys, close to either the lateral termination of a brittle shear zone at Terme di Valdieri, or a step-over between two en-echelon brittle shear zones at Bagni di Vinadio. These observations attest to a strong control operated on the location of outlet regions by both brittle tectonics and the minima in hydraulic potential inside the fractured massif.
Resumo:
Critically ill patients depend on artificial nutrition for the maintenance of their metabolic functions and lean body mass, as well as for limiting underfeeding-related complications. Current guidelines recommend enteral nutrition (EN), possibly within the first 48 hours, as the best way to provide the nutrients and prevent infections. EN may be difficult to realize or may be contraindicated in some patients, such as those presenting anatomic intestinal continuity problems or splanchnic ischemia. A series of contradictory trials regarding the best route and timing for feeding have left the medical community with great uncertainty regarding the place of parenteral nutrition (PN) in critically ill patients. Many of the deleterious effects attributed to PN result from inadequate indications, or from overfeeding. The latter is due firstly to the easier delivery of nutrients by PN compared with EN increasing the risk of overfeeding, and secondly to the use of approximate energy targets, generally based on predictive equations: these equations are static and inaccurate in about 70% of patients. Such high uncertainty about requirements compromises attempts at conducting nutrition trials without indirect calorimetry support because the results cannot be trusted; indeed, both underfeeding and overfeeding are equally deleterious. An individualized therapy is required. A pragmatic approach to feeding is proposed: at first to attempt EN whenever and as early as possible, then to use indirect calorimetry if available, and to monitor delivery and response to feeding, and finally to consider the option of combining EN with PN in case of insufficient EN from day 4 onwards.
Resumo:
Purpose of review: Elucidating the genetic background of Parkinson disease and essential tremor is crucial to understand the pathogenesis and improve diagnostic and therapeutic strategies. Recent findings: A number of approaches have been applied including familial and association studies, and studies of gene expression profiles to identify genes involved in susceptibility to Parkinson disease. These studies have nominated a number of candidate Parkinson disease genes and novel loci including Omi/HtrA2, GIGYF2, FGF20, PDXK, EIF4G1 and PARK16. A recent notable finding has been the confirmation for the role of heterozygous mutations in glucocerebrosidase (GBA) as risk factors for Parkinson disease. Finally, association studies have nominated genetic variation in the leucine-rich repeat and Ig containing 1 gene (LINGO1) as a risk for both Parkinson disease and essential tremor, providing the first genetic evidence of a link between the two conditions. Summary: Although undoubtedly genes remain to be identified, considerable progress has been achieved in the understanding of the genetic basis of Parkinson disease. This same effort is now required for essential tremor. The use of next-generation high-throughput sequencing and genotyping technologies will help pave the way for future insight leading to advances in diagnosis, prevention and cure.
Resumo:
BACKGROUND & AIMS: Since the publications of the ESPEN guidelines on enteral and parenteral nutrition in ICU, numerous studies have added information to assist the nutritional management of critically ill patients regarding the recognition of the right population to feed, the energy-protein targeting, the route and the timing to start. METHODS: We reviewed and discussed the literature related to nutrition in the ICU from 2006 until October 2013. RESULTS: To identify safe, minimal and maximal amounts for the different nutrients and at the different stages of the acute illness is necessary. These amounts might be specific for different phases in the time course of the patient's illness. The best approach is to target the energy goal defined by indirect calorimetry. High protein intake (1.5 g/kg/d) is recommended during the early phase of the ICU stay, regardless of the simultaneous calorie intake. This recommendation can reduce catabolism. Later on, high protein intake remains recommended, likely combined with a sufficient amount of energy to avoid proteolysis. CONCLUSIONS: Pragmatic recommendations are proposed to practically optimize nutritional therapy based on recent publications. However, on some issues, there is insufficient evidence to make expert recommendations.
Resumo:
AbstractBACKGROUND: KRAB-ZFPs (Krüppel-associated box domain-zinc finger proteins) are vertebrate-restricted transcriptional repressors encoded in the hundreds by the mouse and human genomes. They act via an essential cofactor, KAP1, which recruits effectors responsible for the formation of facultative heterochromatin. We have recently shown that KRAB/KAP1 can mediate long-range transcriptional repression through heterochromatin spreading, but also demonstrated that this process is at times countered by endogenous influences.METHOD: To investigate this issue further we used an ectopic KRAB-based repressor. This system allowed us to tether KRAB/KAP1 to hundreds of euchromatic sites within genes, and to record its impact on gene expression. We then correlated this KRAB/KAP1-mediated transcriptional effect to pre-existing genomic and chromatin structures to identify specific characteristics making a gene susceptible to repression.RESULTS: We found that genes that were susceptible to KRAB/KAP1-mediated silencing carried higher levels of repressive histone marks both at the promoter and over the transcribed region than genes that were insensitive. In parallel, we found a high enrichment in euchromatic marks within both the close and more distant environment of these genes.CONCLUSION: Together, these data indicate that high levels of gene activity in the genomic environment and the pre-deposition of repressive histone marks within a gene increase its susceptibility to KRAB/KAP1-mediated repression.
Resumo:
Although stress has been a longstanding issue in organizations and management studies, it has never been studied in relation to Public Service Motivation. This article therefore aims to integrate PSM into the job demands-job resources model of stress in order to determine whether PSM might contribute to stress in public organizations. Drawing upon original data from a questionnaire in a Swiss municipality, this study unsurprisingly shows that "red tape" is an antecedent of stress perception, whereas satisfaction with organizational support, positive feedback, and recognition significantly decrease the level of perceived stress. Astonishingly, the empirical results show that PSM is positively and significantly related to stress perception. By increasing individuals' expectations towards their jobs, PSM might thus contribute to increased pressure on public agents. Ultimately, this article investigates the "dark side" of PSM, which has been neglected by the literature thus far.
Resumo:
OBJECTIVES: This study was designed to identify macrophage-rich atherosclerotic plaque noninvasively by imaging the tissue uptake of long-circulating superparamagnetic nanoparticles with a positive contrast off-resonance imaging sequence (inversion recovery with ON-resonant water suppression [IRON]). BACKGROUND: The sudden rupture of macrophage-rich atherosclerotic plaques can trigger the formation of an occlusive thrombus in coronary vessels, resulting in acute myocardial infarction. Therefore, a noninvasive technique that can identify macrophage-rich plaques and thereby assist with risk stratification of patients with atherosclerosis would be of great potential clinical utility. METHODS: Experiments were conducted on a clinical 3-T magnetic resonance imaging (MRI) scanner in 7 heritable hyperlipidemic and 4 control rabbits. Monocrystalline iron-oxide nanoparticles (MION)-47 were administrated intravenously (2 doses of 250 mumol Fe/kg), and animals underwent serial IRON-MRI before injection of the nanoparticles and serially after 1, 3, and 6 days. RESULTS: After administration of MION-47, a striking signal enhancement was found in areas of plaque only in hyperlipidemic rabbits. The magnitude of enhancement on magnetic resonance images had a high correlation with the number of macrophages determined by histology (p < 0.001) and allowed for the detection of macrophage-rich plaque with high accuracy (area under the curve: 0.92, SE: 0.04, 95% confidence interval: 0.84 to 0.96, p < 0.001). No significant signal enhancement was measured in remote areas without plaque by histology and in control rabbits without atherosclerosis. CONCLUSIONS: Using IRON-MRI in conjunction with superparamagnetic nanoparticles is a promising approach for the noninvasive evaluation of macrophage-rich, vulnerable plaques.
Resumo:
One of the characteristic features of the structure of the epithelial sodium channel family (ENaC) is the presence of two highly conserved cysteine-rich domains (CRD1 and CRD2) in the large extracellular loops of the proteins. We have studied the role of CRDs in the functional expression of rat alphabetagamma ENaC subunits by systematically mutating cysteine residues (singly or in combinations) into either serine or alanine. In the Xenopus oocyte expression system, mutations of two cysteines in CRD1 of alpha, beta, or gamma ENaC subunits led to a temperature-dependent inactivation of the channel. In CRD1, one of the cysteines of the rat alphaENaC subunit (Cys158) is homologous to Cys133 of the corresponding human subunit causing, when mutated to tyrosine (C133Y), pseudohypoaldosteronism type 1, a severe salt-loosing syndrome in neonates. In CRD2, mutation of two cysteines in alpha and beta but not in the gamma subunit also produced a temperature-dependent inactivation of the channel. The main features of the mutant cysteine channels are: (i) a decrease in cell surface expression of channel molecules that parallels the decrease in channel activity and (ii) a normal assembly or rate of degradation as assessed by nondenaturing co-immunoprecipitation of [35S]methionine-labeled channel protein. These data indicate that the two cysteines in CRD1 and CRD2 are not a prerequisite for subunit assembly and/or intrinsic channel activity. We propose that they play an essential role in the efficient transport of assembled channels to the plasma membrane.
Resumo:
Proline- and acid-rich (PAR) basic region leucine zipper (bZIP) proteins thyrotroph embryonic factor (TEF), D-site-binding protein (DBP), and hepatic leukemia factor have been involved in neurotransmitter homeostasis and amino acid metabolism. Here we demonstrate a novel role for these proteins in the transcriptional control of a BH3-only gene. PAR bZIP proteins are able to transactivate the promoter of bcl-gS. This promoter is particularly responsive to TEF activation and is silenced by NFIL3, a repressor that shares the consensus binding site with PAR bZIP proteins. Consistently, transfection of TEF induces the expression of endogenous bcl-gS in cancer cells, and this induction is independent of p53. A naturally occurring variant of DBP (tDBP), lacking the transactivation domain, has been identified and shown to impede the formation of active TEF dimers in a competitive manner and to reduce the TEF-dependent induction of bcl-gS. Of note, treatment of cancer cells with etoposide induces TEF activation and promotes the expression of bcl-gS. Furthermore, blockade of bcl-gS or TEF expression by a small interfering RNA strategy or transfection with tDBP significantly reduces the etoposide-mediated apoptotic cell death. These findings represent the first described role for PAR bZIP proteins in the regulation of a gene involved in the execution of apoptosis.
Resumo:
This paper presents general problems and approaches for the spatial data analysis using machine learning algorithms. Machine learning is a very powerful approach to adaptive data analysis, modelling and visualisation. The key feature of the machine learning algorithms is that they learn from empirical data and can be used in cases when the modelled environmental phenomena are hidden, nonlinear, noisy and highly variable in space and in time. Most of the machines learning algorithms are universal and adaptive modelling tools developed to solve basic problems of learning from data: classification/pattern recognition, regression/mapping and probability density modelling. In the present report some of the widely used machine learning algorithms, namely artificial neural networks (ANN) of different architectures and Support Vector Machines (SVM), are adapted to the problems of the analysis and modelling of geo-spatial data. Machine learning algorithms have an important advantage over traditional models of spatial statistics when problems are considered in a high dimensional geo-feature spaces, when the dimension of space exceeds 5. Such features are usually generated, for example, from digital elevation models, remote sensing images, etc. An important extension of models concerns considering of real space constrains like geomorphology, networks, and other natural structures. Recent developments in semi-supervised learning can improve modelling of environmental phenomena taking into account on geo-manifolds. An important part of the study deals with the analysis of relevant variables and models' inputs. This problem is approached by using different feature selection/feature extraction nonlinear tools. To demonstrate the application of machine learning algorithms several interesting case studies are considered: digital soil mapping using SVM, automatic mapping of soil and water system pollution using ANN; natural hazards risk analysis (avalanches, landslides), assessments of renewable resources (wind fields) with SVM and ANN models, etc. The dimensionality of spaces considered varies from 2 to more than 30. Figures 1, 2, 3 demonstrate some results of the studies and their outputs. Finally, the results of environmental mapping are discussed and compared with traditional models of geostatistics.