2 resultados para nuclear octupole deformation model
em Université de Lausanne, Switzerland
Resumo:
Eukaryotic cells generate energy in the form of ATP, through a network of mitochondrial complexes and electron carriers known as the oxidative phosphorylation system. In mammals, mitochondrial complex I (CI) is the largest component of this system, comprising 45 different subunits encoded by mitochondrial and nuclear DNA. Humans diagnosed with mutations in the gene NDUFS4, encoding a nuclear DNA-encoded subunit of CI (NADH dehydrogenase ubiquinone Fe-S protein 4), typically suffer from Leigh syndrome, a neurodegenerative disease with onset in infancy or early childhood. Mitochondria from NDUFS4 patients usually lack detectable NDUFS4 protein and show a CI stability/assembly defect. Here, we describe a recessive mouse phenotype caused by the insertion of a transposable element into Ndufs4, identified by a novel combined linkage and expression analysis. Designated Ndufs4(fky), the mutation leads to aberrant transcript splicing and absence of NDUFS4 protein in all tissues tested of homozygous mice. Physical and behavioral symptoms displayed by Ndufs4(fky/fky) mice include temporary fur loss, growth retardation, unsteady gait, and abnormal body posture when suspended by the tail. Analysis of CI in Ndufs4(fky/fky) mice using blue native PAGE revealed the presence of a faster migrating crippled complex. This crippled CI was shown to lack subunits of the "N assembly module", which contains the NADH binding site, but contained two assembly factors not present in intact CI. Metabolomic analysis of the blood by tandem mass spectrometry showed increased hydroxyacylcarnitine species, implying that the CI defect leads to an imbalanced NADH/NAD(+) ratio that inhibits mitochondrial fatty acid β-oxidation.
Resumo:
OBJECTIVE: Fibrotic changes are initiated early in acute respiratory distress syndrome. This may involve overproliferation of alveolar type II cells. In an animal model of acute respiratory distress syndrome, we have shown that the administration of an adenoviral vector overexpressing the 70-kd heat shock protein (AdHSP) limited pathophysiological changes. We hypothesized that this improvement may be modulated, in part, by an early AdHSP-induced attenuation of alveolar type II cell proliferation. DESIGN: Laboratory investigation. SETTING: Hadassah-Hebrew University and University of Pennsylvania animal laboratories. SUBJECTS: Sprague-Dawley Rats (250 g). INTERVENTIONS: Lung injury was induced in male Sprague-Dawley rats via cecal ligation and double puncture. At the time of cecal ligation and double puncture, we injected phosphate-buffered saline, AdHSP, or AdGFP (an adenoviral vector expressing the marker green fluorescent protein) into the trachea. Rats then received subcutaneous bromodeoxyuridine. In separate experiments, A549 cells were incubated with medium, AdHSP, or AdGFP. Some cells were also stimulated with tumor necrosis factor-alpha. After 48 hrs, cytosolic and nuclear proteins from rat lungs or cell cultures were isolated. These were subjected to immunoblotting, immunoprecipitation, electrophoretic mobility shift assay, fluorescent immunohistochemistry, and Northern blot analysis. MEASUREMENTS AND MAIN RESULTS: Alveolar type I cells were lost within 48 hrs of inducing acute respiratory distress syndrome. This was accompanied by alveolar type II cell proliferation. Treatment with AdHSP preserved alveolar type I cells and limited alveolar type II cell proliferation. Heat shock protein 70 prevented overexuberant cell division, in part, by inhibiting hyperphosphorylation of the regulatory retinoblastoma protein. This prevented retinoblastoma protein ubiquitination and degradation and, thus, stabilized the interaction of retinoblastoma protein with E2F1, a key cell division transcription factor. CONCLUSIONS: : Heat shock protein 70-induced attenuation of cell proliferation may be a useful strategy for limiting lung injury when treating acute respiratory distress syndrome if consistent in later time points.