9 resultados para nonenzymatic glycation
em Université de Lausanne, Switzerland
Resumo:
In higher plants such as Arabidopsis thaliana, omega-3 trienoic fatty acids (TFAs), represented mainly by alpha-linolenic acid, serve as precursors of jasmonic acid (JA), a potent lipid signal molecule essential for defense. The JA-independent roles of TFAs were investigated by comparing the TFA- and JA-deficient fatty acid desaturase triple mutant (fad3-2 fad7-2 fad8 (fad3 fad7 fad8)) with the aos (allene oxide synthase) mutant that contains TFAs but is JA-deficient. When challenged with the fungus Botrytis, resistance of the fad3 fad7 fad8 mutant was reduced when compared with the aos mutant, suggesting that TFAs play a role in cell survival independently of being the precursors of JA. An independent genetic approach using the lesion mimic mutant accelerated cell death2 (acd2-2) confirmed the importance of TFAs in containing lesion spread, which was increased in the lines in which the fad3 fad7 fad8 and acd2-2 mutations were combined when compared with the aos acd2-2 lines. Malondialdehyde, found to result from oxidative TFA fragmentation during lesion formation, was measured by gas chromatography-mass spectrometry. Its levels correlated with the survival of the tissue. Furthermore, plants lacking TFAs overproduced salicylic acid (SA), hydrogen peroxide, and transcripts encoding several SA-regulated and SA biosynthetic proteins. The data suggest a physiological role for TFAs as sinks for reactive oxygen species.
Resumo:
Tocopherols (vitamin E) are lipophilic antioxidants that are synthesized by all plants and are particularly abundant in seeds. Two tocopherol-deficient mutant loci in Arabidopsis thaliana were used to examine the functions of tocopherols in seedlings: vitamin e1 (vte1), which accumulates the pathway intermediate 2,3-dimethyl-5-phytyl-1,4-benzoquinone (DMPBQ); and vte2, which lacks all tocopherols and pathway intermediates. Only vte2 displayed severe seedling growth defects, which corresponded with massively increased levels of the major classes of nonenzymatic lipid peroxidation products: hydroxy fatty acids, malondialdehyde, and phytoprostanes. In the absence of pathogens, the phytoalexin camalexin accumulated in vte2 seedlings to levels 100-fold higher than in wild-type or vte1 seedlings. Similarly, gene expression profiling in wild-type, vte1, and vte2 seedlings indicated that increased levels of nonenzymatic lipid peroxidation in vte2 corresponded to increased expression of many defense-related genes, which were not induced in vte1. Both biochemical and transcriptional analyses of vte2 seedlings indicate that nonenzymatic lipid peroxidation plays a significant role in modulating plant defense responses. Together, these results establish that tocopherols in wild-type plants or DMPBQ in vte1 plants limit nonenzymatic lipid peroxidation during germination and early seedling development, thereby preventing the inappropriate activation of transcriptional and biochemical defense responses.
Resumo:
1. Contexte La physiopathologie de l'artériopathie diabétique a fait l'objet de nombreuses études qui ont révélé l'importance des voies de l'ostéogenèse et de la glycation. Ces nouvelles connaissances s'avèrent prometteuses, notamment dans une perspective thérapeutique. Mais peu d'études se sont intéressées à l'artériopathie des membres inférieurs en présence de diabète. 2. Objectifs L'objectif principal est d'étudier l'association entre marqueurs de remodelage osseux, glycation avancée et calcification artérielle des membres inférieurs en présence de diabète afin de pouvoir par la suite et sur la base d'un bon niveau de preuves, mettre en place des protocoles à visée thérapeutique ciblant spécifiquement ces mécanismes physiopathologiques. Le processus ciblé est la calcification artérielle, particulièrement prévalente en présence de diabète, mais dont la localisation aux membres inférieurs est encore peu étudiée en clinique. Nous étudions également la relation de la calcification artérielle avec de nombreux autres paramètres, notamment des marqueurs inflammatoires, l'adiponectine, le métabolisme phosphocalcique et la neuropathie diabétique. 3. Méthodologie Notre protocole est intitulé DIACART (« DIAbète et Calcification ARTérielle »). Il s'agit d'une étude transversale et prospective menée par le groupe hospitalier universitaire Pitié-Salpêtrière (GHPS) à Paris, sous la direction du Professeur Agnès Hartemann, cheffe du service de diabétologie. J'ai été le médecin responsable des visites d'inclusion. Ma thèse se décline en 3 parties : la 1ère partie s'intéresse aux données actuelles de la littérature sur l'artériopathie diabétique : épidémiologie, facteurs de risque, traitement, physiopathologie ; la 2e partie décrit la mise en oeuvre du protocole DIACART et présente les résultats de la partie transversale de cette étude. La 3e partie présente les 3 études ancillaires au protocole DIACART, qui ont donné lieu à 3 articles dont l'un a été accepté pour publication le 3.02.2013, alors que les 2 autres ont été soumis en mars 2013 et sont en revue. 4. Résultats et conclusion Les résultats transversaux de notre étude suggèrent que l'ostéoprotégérine (OPG), la fétuine A et la glycation avancée sont impliquées dans le processus de calcification des artères des membres inférieurs chez les patients diabétiques. Par ailleurs, nous observons une relation positive très forte entre adiponectine et artériopathie périphérique. Notre étude confirme également le lien connu entre calcification artérielle et différents marqueurs et/ou facteurs de risque cardiovasculaire (RCV) : âge, sexe, durée du diabète, tabagisme, neuropathie, néphropathie, rétinopathie. L'analyse prospective apportera des notions complémentaires quant aux liens dynamiques de ces variables avec la calcification artérielle, aidera à préciser leur rôle comme marqueurs et/ou facteurs de RCV, et permettra peut-être la mise en place d'essais thérapeutiques ciblant ces mécanismes.
Resumo:
The role of peroxisome proliferator activator receptor (PPAR)β/δ in the pathogenesis of Alzheimer's disease has only recently been explored through the use of PPARβ/δ agonists. Here we evaluated the effects of PPARβ/δ deficiency on the amyloidogenic pathway and tau hyperphosphorylation. PPARβ/δ-null mice showed cognitive impairment in the object recognition task, accompanied by enhanced DNA-binding activity of NF-κB in the cortex and increased expression of IL-6. In addition, two NF-κB-target genes involved in β-amyloid (Aβ) synthesis and deposition, the β site APP cleaving enzyme 1 (Bace1) and the receptor for advanced glycation endproducts (Rage), respectively, increased in PPARβ/δ-null mice compared to wild type animals. The protein levels of glial fibrillary acidic protein (GFAP) increased in the cortex of PPARβ/δ-null mice, which would suggest the presence of astrogliosis. Finally, tau hyperphosphorylation at Ser199 and enhanced levels of PHF-tau were associated with increased levels of the tau kinases CDK5 and phospho-ERK1/2 in the cortex of PPARβ/δ(-/-) mice. Collectively, our findings indicate that PPARβ/δ deficiency results in cognitive impairment associated with enhanced inflammation, astrogliosis and tau hyperphosphorylation in the cortex.
Resumo:
AIMS: High-mobility group box 1 (HMGB1) is a nuclear protein actively secreted by immune cells and passively released by necrotic cells that initiates pro-inflammatory signalling through binding to the receptor for advance glycation end-products. HMGB1 has been established as a key inflammatory mediator during myocardial infarction, but the proximal mechanisms responsible for myocardial HMGB1 expression and release in this setting remain unclear. Here, we investigated the possible involvement of peroxynitrite, a potent cytotoxic oxidant formed during myocardial infarction, on these processes. METHODS AND RESULTS: The ability of peroxynitrite to induce necrosis and HMGB1 release in vitro was evaluated in H9c2 cardiomyoblasts and in primary murine cardiac cells (myocytes and non-myocytes). In vivo, myocardial HMGB1 expression and nitrotyrosine content (a marker of peroxynitrite generation) were determined following myocardial ischaemia and reperfusion in rats, whereas peroxynitrite formation was inhibited by two different peroxynitrite decomposition catalysts: 5,10,15,20-tetrakis(4-sulphonatophenyl) porphyrinato iron (III) (FeTPPS) or Mn(III)-tetrakis(4-benzoic acid) porphyrin chloride (MnTBAP). In all types of cells studied, peroxynitrite (100 μM) elicited significant necrosis, the loss of intracellular HMGB1, and its passive release into the medium. In vivo, myocardial ischaemia-reperfusion induced significant myocardial necrosis, cardiac nitrotyrosine formation, and marked overexpression of myocardial HMGB1. FeTPPS reduced nitrotyrosine, decreased infarct size, and suppressed HMGB1 overexpression, an effect that was similarly obtained with MnTBAP. CONCLUSION: These findings indicate that peroxynitrite represents a key mediator of HMGB1 overexpression and release by cardiac cells and provide a novel mechanism linking myocardial oxidative/nitrosative stress with post-infarction myocardial inflammation.
Resumo:
The glyoxalase system is the most important pathway for the detoxification of methylglyoxal (MG), a highly reactive dicarbonyl compound mainly formed as a by-product of glycolysis. MG is a major precursor of advanced glycation end products (AGEs), which are associated with several neurodegenerative disorders. Although the neurotoxic effects of MG and AGEs are well characterized, little is known about the glyoxalase system in the brain, in particular with regards to its activity in different neural cell types. Results of the present study reveal that both enzymes composing the glyoxalase system [glyoxalase-1 (Glo-1) and Glo-2] were highly expressed in primary mouse astrocytes compared with neurons, which translated into higher enzymatic activity rates in astrocytes (9.9- and 2.5-fold, respectively). The presence of a highly efficient glyoxalase system in astrocytes was associated with lower accumulation of AGEs compared with neurons (as assessed by Western blotting), a sixfold greater resistance to MG toxicity, and the capacity to protect neurons against MG in a coculture system. In addition, Glo-1 downregulation using RNA interference strategies resulted in a loss of viability in neurons, but not in astrocytes. Finally, stimulation of neuronal glycolysis via lentiviral-mediated overexpression of 6-phosphofructose-2-kinase/fructose-2,6-bisphosphatase-3 resulted in increased MG levels and MG-modified proteins. Since MG is largely produced through glycolysis, this suggests that the poor capacity of neurons to upregulate their glycolytic flux as compared with astrocytes may be related to weaker defense mechanisms against MG toxicity. Accordingly, the neuroenergetic specialization taking place between these two cell types may serve as a protective mechanism against MG-induced neurotoxicity.
Resumo:
Cardiovascular complications represent by far the most severe manifestations of diabetes mellitus. Treatment aimed at stopping progression of vascular lesions may fall short if initiated when the disease becomes clinically evident. Therefore, identification of the earliest vascular disfunctions may offer the best opportunity to interfere with pathogenic mechanisms and avoid progression of diabetic vasculopathy. In this report, we present a few mechanisms that alter hemodynamic and metabolic homeostasis in the course of diabetes mellitus. Endothelial function with special emphasis on nitric oxide and oxidative stress, advanced glycation end products, and the renin angiotensin system are briefly discussed. New pharmacological agents that may favorably influence these parameters are presently undergoing clinical trials. However, tight control of plasma glucose and cardiovascular risk factors represent the cornerstone of the treatment in diabetes to slow progression of vascular disease.
Resumo:
Endocannabinoids and cannabinoid 1 (CB(1)) receptors have been implicated in cardiac dysfunction, inflammation, and cell death associated with various forms of shock, heart failure, and atherosclerosis, in addition to their recognized role in the development of various cardiovascular risk factors in obesity/metabolic syndrome and diabetes. In this study, we explored the role of CB(1) receptors in myocardial dysfunction, inflammation, oxidative/nitrative stress, cell death, and interrelated signaling pathways, using a mouse model of type 1 diabetic cardiomyopathy. Diabetic cardiomyopathy was characterized by increased myocardial endocannabinoid anandamide levels, oxidative/nitrative stress, activation of p38/Jun NH(2)-terminal kinase (JNK) mitogen-activated protein kinases (MAPKs), enhanced inflammation (tumor necrosis factor-α, interleukin-1β, cyclooxygenase 2, intracellular adhesion molecule 1, and vascular cell adhesion molecule 1), increased expression of CB(1), advanced glycation end product (AGE) and angiotensin II type 1 receptors (receptor for advanced glycation end product [RAGE], angiotensin II receptor type 1 [AT(1)R]), p47(phox) NADPH oxidase subunit, β-myosin heavy chain isozyme switch, accumulation of AGE, fibrosis, and decreased expression of sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase (SERCA2a). Pharmacological inhibition or genetic deletion of CB(1) receptors attenuated the diabetes-induced cardiac dysfunction and the above-mentioned pathological alterations. Activation of CB(1) receptors by endocannabinoids may play an important role in the pathogenesis of diabetic cardiomyopathy by facilitating MAPK activation, AT(1)R expression/signaling, AGE accumulation, oxidative/nitrative stress, inflammation, and fibrosis. Conversely, CB(1) receptor inhibition may be beneficial in the treatment of diabetic cardiovascular complications.