153 resultados para network attack
em Université de Lausanne, Switzerland
Resumo:
Adaptive immunity is initiated in T-cell zones of secondary lymphoid organs. These zones are organized in a rigid 3D network of fibroblastic reticular cells (FRCs) that are a rich cytokine source. In response to lymph-borne antigens, draining lymph nodes (LNs) expand several folds in size, but the fate and role of the FRC network during immune response is not fully understood. Here we show that T-cell responses are accompanied by the rapid activation and growth of FRCs, leading to an expanded but similarly organized network of T-zone FRCs that maintains its vital function for lymphocyte trafficking and survival. In addition, new FRC-rich environments were observed in the expanded medullary cords. FRCs are activated within hours after the onset of inflammation in the periphery. Surprisingly, FRC expansion depends mainly on trapping of naïve lymphocytes that is induced by both migratory and resident dendritic cells. Inflammatory signals are not required as homeostatic T-cell proliferation was sufficient to trigger FRC expansion. Activated lymphocytes are also dispensable for this process, but can enhance the later growth phase. Thus, this study documents the surprising plasticity as well as the complex regulation of FRC networks allowing the rapid LN hyperplasia that is critical for mounting efficient adaptive immunity.
Resumo:
BACKGROUND/OBJECTIVES: This study aims to assess whether patent foramen ovale (PFO) closure is superior to medical therapy in preventing recurrence of cryptogenic ischemic stroke or transient ischemic attack (TIA). METHODS: We searched PubMed for randomized trials which compared PFO closure with medical therapy in cryptogenic stroke/TIA using the items: "stroke or cerebrovascular accident or TIA" and "patent foramen ovale or paradoxical embolism" and "trial or study". RESULTS: Among 650 potentially eligible articles, 3 were included including 2303 patients. There was no statistically significant difference between PFO-closure and medical therapy in ischemic stroke recurrence (1.91% vs. 2.94% respectively, OR: 0.64, 95%CI: 0.37-1.10), TIA (2.08% vs. 2.42% respectively, OR: 0.87, 95%CI: 0.50-1.51) and death (0.60% vs. 0.86% respectively, OR: 0.71, 95%CI: 0.28-1.82). In subgroup analysis, there was significant reduction of ischemic strokes in the AMPLATZER PFO Occluder arm vs. medical therapy (1.4% vs. 3.04% respectively, OR: 0.46, 95%CI: 0.21-0.98, relative-risk-reduction: 53.2%, absolute-risk-reduction: 1.6%, number-needed-to-treat: 61.8) but not in the STARFlex device (2.7% vs. 2.8% with medical therapy, OR: 0.93, 95%CI: 0.45-2.11). Compared to medical therapy, the number of patients with new-onset atrial fibrillation (AF) was similar in the AMPLATZER PFO Occluder arm (0.72% vs. 1.28% respectively, OR: 1.81, 95%CI: 0.60-5.42) but higher in the STARFlex device (0.64% vs. 5.14% respectively, OR: 8.30, 95%CI: 2.47-27.84). CONCLUSIONS: This meta-analysis does not support PFO closure for secondary prevention with unselected devices in cryptogenic stroke/TIA. In subgroup analysis, selected closure devices may be superior to medical therapy without increasing the risk of new-onset AF, however. This observation should be confirmed in further trials using inclusion criteria for patients with high likelihood of PFO-related stroke recurrence.
Resumo:
Functional connectivity in human brain can be represented as a network using electroencephalography (EEG) signals. These networks--whose nodes can vary from tens to hundreds--are characterized by neurobiologically meaningful graph theory metrics. This study investigates the degree to which various graph metrics depend upon the network size. To this end, EEGs from 32 normal subjects were recorded and functional networks of three different sizes were extracted. A state-space based method was used to calculate cross-correlation matrices between different brain regions. These correlation matrices were used to construct binary adjacency connectomes, which were assessed with regards to a number of graph metrics such as clustering coefficient, modularity, efficiency, economic efficiency, and assortativity. We showed that the estimates of these metrics significantly differ depending on the network size. Larger networks had higher efficiency, higher assortativity and lower modularity compared to those with smaller size and the same density. These findings indicate that the network size should be considered in any comparison of networks across studies.
Resumo:
PURPOSE: To better define outcome and prognostic factors in primary pineal tumors. MATERIALS AND METHODS: Thirty-five consecutive patients from seven academic centers of the Rare Cancer Network diagnosed between 1988 and 2006 were included. Median age was 36 years. Surgical resection consisted of biopsy in 12 cases and resection in 21 (2 cases with unknown resection). All patients underwent radiotherapy and 12 patients received also chemotherapy. RESULTS: Histological subtypes were pineoblastoma (PNB) in 21 patients, pineocytoma (PC) in 8 patients and pineocytoma with intermediate differentiation in 6 patients. Six patients with PNB had evidence of spinal seeding. Fifteen patients relapsed (14 PNB and 1 PC) with PNB cases at higher risk (p = 0.031). Median survival time was not reached. Median disease-free survival was 82 months (CI 50 % 28-275). In univariate analysis, age younger than 36 years was an unfavorable prognostic factor (p = 0.003). Patients with metastases at diagnosis had poorer survival (p = 0.048). Late side effects related to radiotherapy were dementia, leukoencephalopathy or memory loss in seven cases, occipital ischemia in one, and grade 3 seizures in two cases. Side effects related to chemotherapy were grade 3-4 leucopenia in five cases, grade 4 thrombocytopenia in three cases, grade 2 anemia in two cases, grade 4 pancytopenia in one case, grade 4 vomiting in one case and renal failure in one case. CONCLUSIONS: Age and dissemination at diagnosis influenced survival in our series. The prevalence of chronic toxicity suggests that new adjuvant strategies are advisable.
Resumo:
Water transport in wood is vital for the survival of trees. With synchrotron radiation X-ray tomographic microscopy (SRXTM), it has become possible to characterize and quantify the three-dimensional (3D) network formed by vessels that are responsible for longitudinal transport. In the present study, the spatial size dependence of vessels and the organization inside single growth rings in terms of vessel-induced porosity was studied by SRXTM. Network characteristics, such as connectivity, were deduced by digital image analysis from the processed tomographic data and related to known complex network topologies.
Resumo:
The first scientific meeting of the newly established European SYSGENET network took place at the Helmholtz Centre for Infection Research (HZI) in Braunschweig, April 7-9, 2010. About 50 researchers working in the field of systems genetics using mouse genetic reference populations (GRP) participated in the meeting and exchanged their results, phenotyping approaches, and data analysis tools for studying systems genetics. In addition, the future of GRP resources and phenotyping in Europe was discussed.
Resumo:
BACKGROUND AND PURPOSE: To assess whether the combined analysis of all phase III trials of nonvitamin-K-antagonist (non-VKA) oral anticoagulants in patients with atrial fibrillation and previous stroke or transient ischemic attack shows a significant difference in efficacy or safety compared with warfarin. METHODS: We searched PubMed until May 31, 2012, for randomized clinical trials using the following search items: atrial fibrillation, anticoagulation, warfarin, and previous stroke or transient ischemic attack. Studies had to be phase III trials in atrial fibrillation patients comparing warfarin with a non-VKA currently on the market or with the intention to be brought to the market in North America or Europe. Analysis was performed on intention-to-treat basis. A fixed-effects model was used as more appropriate than a random-effects model when combining a small number of studies. RESULTS: Among 47 potentially eligible articles, 3 were included in the meta-analysis. In 14 527 patients, non-VKAs were associated with a significant reduction of stroke/systemic embolism (odds ratios, 0.85 [95% CI, 074-0.99]; relative risk reduction, 14%; absolute risk reduction, 0.7%; number needed to treat, 134 over 1.8-2.0 years) compared with warfarin. Non-VKAs were also associated with a significant reduction of major bleeding compared with warfarin (odds ratios, 0.86 [95% CI, 075-0.99]; relative risk reduction, 13%; absolute risk reduction, 0.8%; number needed to treat, 125), mainly driven by the significant reduction of hemorrhagic stroke (odds ratios, 0.44 [95% CI, 032-0.62]; relative risk reduction, 57.9%; absolute risk reduction, 0.7%; number needed to treat, 139). CONCLUSIONS: In the context of the significant limitations of combining the results of disparate trials of different agents, non-VKAs seem to be associated with a significant reduction in rates of stroke or systemic embolism, hemorrhagic stroke, and major bleeding when compared with warfarin in patients with previous stroke or transient ischemic attack.
Neonatal dexamethasone induces premature microvascular maturation of the alveolar capillary network.
Resumo:
Postnatal glucocorticoid treatment of preterm infants was mimicked by treating newborn rats with dexamethasone (0.1-0.01 microg/g, days 1-4). This regimen has been shown to cause delayed alveolarization. Knowing that microvascular maturation (transformation of double- to single-layered capillary networks in alveolar septa) and septal thinning prevent further alveolarization, we measured septal maturation on electron photomicrographs in treated and control animals. In treated rats and before day 10, we observed a premature nonreversing microvascular maturation and a transient septal thinning, which both appeared focally. In vascular casts of both groups, we observed contacts between the two capillary layers of immature alveolar septa, which were predictive for capillary fusions. Studying serial electron microscopic sections of human lungs, we were able to confirm the postulated fusion process for the first time. We conclude that alveolar microvascular maturation indeed occurs by capillary fusion and that the dexamethasone-induced impairment of alveolarization is associated with focal premature capillary fusion.
Resumo:
Aim: The study aims to describe the activities of the Swiss Early Psychosis Project (SWEPP) which was founded in 1999 as a national network to further and disseminate knowledge on early psychosis (EP) and to enhance collaboration between healthcare groups. Methods: The present paper is a detailed account of the initiation and the development of the Swiss network. We describe all activities such as the several educational campaigns that were addressed to primary and secondary care groups since the early days. We also provide an overview of the current status of EP services throughout the country. Results: Today, most regions in Switzerland provide specialized EP inpatient and/or outpatient services with a clinical or combined clinical research approach that targets at-risk and/or first-episode populations. Some more recently initiated EP services have been launched as collaborative models between several local or regional psychiatric services. Conclusions: The increasing number of EP services and experts in Switzerland may mirror the catalyzing contribution of the Swiss Early Psychosis Project in this important field of health care. The country's small size and the increasing density of specialized services provide excellent bases for larger-scale networking activities in the future, both in clinical and research areas.
Resumo:
Accumulating evidence suggests that changes in the metabolic signature of astrocytes underlie their response to neuroinflammation, but how proinflammatory stimuli induce these changes is poorly understood. By monitoring astrocytes following acute cortical injury, we identified a differential and region-specific remodeling of their mitochondrial network: while astrocytes within the penumbra of the lesion undergo mitochondrial elongation, those located in the core-the area invaded by proinflammatory cells-experience transient mitochondrial fragmentation. In brain slices, proinflammatory stimuli reproduced localized changes in mitochondrial dynamics, favoring fission over fusion. This effect was triggered by Drp1 phosphorylation and ultimately resulted in reduced respiratory capacity. Furthermore, maintenance of the mitochondrial architecture critically depended on the induction of autophagy. Deletion of Atg7, required for autophagosome formation, prevented the reestablishment of tubular mitochondria, leading to marked reactive oxygen species accumulation and cell death. Thus, our data reveal autophagy to be essential for regenerating astrocyte mitochondrial networks during inflammation.
Resumo:
MOTIVATION: Combinatorial interactions of transcription factors with cis-regulatory elements control the dynamic progression through successive cellular states and thus underpin all metazoan development. The construction of network models of cis-regulatory elements, therefore, has the potential to generate fundamental insights into cellular fate and differentiation. Haematopoiesis has long served as a model system to study mammalian differentiation, yet modelling based on experimentally informed cis-regulatory interactions has so far been restricted to pairs of interacting factors. Here, we have generated a Boolean network model based on detailed cis-regulatory functional data connecting 11 haematopoietic stem/progenitor cell (HSPC) regulator genes. RESULTS: Despite its apparent simplicity, the model exhibits surprisingly complex behaviour that we charted using strongly connected components and shortest-path analysis in its Boolean state space. This analysis of our model predicts that HSPCs display heterogeneous expression patterns and possess many intermediate states that can act as 'stepping stones' for the HSPC to achieve a final differentiated state. Importantly, an external perturbation or 'trigger' is required to exit the stem cell state, with distinct triggers characterizing maturation into the various different lineages. By focusing on intermediate states occurring during erythrocyte differentiation, from our model we predicted a novel negative regulation of Fli1 by Gata1, which we confirmed experimentally thus validating our model. In conclusion, we demonstrate that an advanced mammalian regulatory network model based on experimentally validated cis-regulatory interactions has allowed us to make novel, experimentally testable hypotheses about transcriptional mechanisms that control differentiation of mammalian stem cells. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.