256 resultados para nectar secretion process
em Université de Lausanne, Switzerland
Resumo:
The recommended dietary allowances of many expert committees (UK DHSS 1979, FAO/WHO/UNU 1985, USA NRC 1989) have set out the extra energy requirements necessary to support lactation on the basis of an efficiency of 80 per cent for human milk production. The metabolic efficiency of milk synthesis can be derived from the measurements of resting energy expenditure in lactating women and in a matched control group of non-pregnant non-lactating women. The results of the present study in Gambian women, as well as a review of human studies on energy expenditure during lactation performed in different countries, suggest an efficiency of human milk synthesis greater than the value currently used by expert committees. We propose that an average figure of 95 per cent would be more appropriate to calculate the energy cost of human lactation.
Resumo:
BACKGROUND: RalA and RalB are multifuntional GTPases involved in a variety of cellular processes including proliferation, oncogenic transformation and membrane trafficking. Here we investigated the mechanisms leading to activation of Ral proteins in pancreatic beta-cells and analyzed the impact on different steps of the insulin-secretory process. METHODOLOGY/PRINCIPAL FINDINGS: We found that RalA is the predominant isoform expressed in pancreatic islets and insulin-secreting cell lines. Silencing of this GTPase in INS-1E cells by RNA interference led to a decrease in secretagogue-induced insulin release. Real-time measurements by fluorescence resonance energy transfer revealed that RalA activation in response to secretagogues occurs within 3-5 min and reaches a plateau after 10-15 min. The activation of the GTPase is triggered by increases in intracellular Ca2+ and cAMP and is prevented by the L-type voltage-gated Ca2+ channel blocker Nifedipine and by the protein kinase A inhibitor H89. Defective insulin release in cells lacking RalA is associated with a decrease in the secretory granules docked at the plasma membrane detected by Total Internal Reflection Fluorescence microscopy and with a strong impairment in Phospholipase D1 activation in response to secretagogues. RalA was found to be activated by RalGDS and to be severely hampered upon silencing of this GDP/GTP exchange factor. Accordingly, INS-1E cells lacking RalGDS displayed a reduction in hormone secretion induced by secretagogues and in the number of insulin-containing granules docked at the plasma membrane. CONCLUSIONS/SIGNIFICANCE: Taken together, our data indicate that RalA activation elicited by the exchange factor RalGDS in response to a rise in intracellular Ca2+ and cAMP controls hormone release from pancreatic beta-cell by coordinating the execution of different events in the secretory pathway.
Resumo:
Clinical use of antibiotics is based on their capacity to inhibit bacterial growth via bacteriostatic or bacteriocidal effects. In this article, we show that the aminoglycoside antibiotic neomycin, the cyclic lipopeptide antibiotic polymyxin B, and the cyclic peptide antibiotics gramicidin and tyrothricin can induce IL-1β secretion in bone marrow dendritic cells and macrophages. LPS priming was required to trigger the transcription and translation of pro-IL-1β but was independent of TNFR or IL-1R signaling. All four antibiotics required the NLRP3 inflammasome, the adaptor ASC, and caspase-1 activation to secrete IL-1β, a process that depended on potassium efflux but was independent of P2X7 receptor. All four antibiotics induced neutrophil influx into the peritoneal cavity of mice, which required NLRP3 only in the case of polymyxin B. Together, certain antibiotics have the potential to directly activate innate immunity of the host.
Resumo:
Acid-sensing ion channels (ASICs) are non-voltage-gated sodium channels activated by an extracellular acidification. They are widely expressed in neurons of the central and peripheral nervous system. ASICs have a role in learning, the expression of fear, in neuronal death after cerebral ischemia, and in pain sensation. Tissue damage leads to the release of inflammatory mediators. There is a subpopulation of sensory neurons which are able to release the neuropeptides calcitonin gene-related peptide (CGRP) and substance P (SP). Neurogenic inflammation refers to the process whereby peripheral release of the neuropeptides CGRP and SP induces vasodilation and extravasation of plasma proteins, respectively. Our laboratory has previously shown that calcium-permeable homomeric ASIC1a channels are present in a majority of CGRP- or SP-expressing small diameter sensory neurons. In the first part of my thesis, we tested the hypothesis that a local acidification can produce an ASIC-mediated calcium-dependant neuropeptide secretion. We have first verified the co-expression of ASICs and CGRP/SP using immunochemistry and in-situ hybridization on dissociated rat dorsal root ganglion (DRG) neurons. We found that most CGRP/SP-positive neurons also expressed ASIC1a and ASIC3 subunits. Calcium imaging experiments with Fura-2 dye showed that an extracellular acidification can induce an increase of intracellular Ca2+ concentration, which is essential for secretion. This increase of intracellular Ca2+ concentration is, at least in some cells, ASIC-dependent, as it can be prevented by amiloride, an ASIC antagonist, and by Psalmotoxin (PcTx1), a specific ASIC1a antagonist. We identified a sub-population of neurons whose acid-induced Ca2+ entry was completely abolished by amiloride, an amiloride-resistant population which does not express ASICs, but rather another acid-sensing channel, possibly transient receptor potential vanilloïde 1 (TRPV1), and a population expressing both H+-gated channel types. Voltage-gated calcium channels (Cavs) may also mediate Ca2+ entry. Co-application of the Cavs inhibitors (ω-conotoxin MVIIC, Mibefradil and Nifedipine) reduced the Ca2+ increase in neurons expressing ASICs during an acidification to pH 6. This indicates that ASICs can depolarise the neuron and activate Cavs. Homomeric ASIC1a are Ca2+-permeable and allow a direct entry of Ca2+ into the cell; other ASICs mediate an indirect entry of Ca2+ by inducing a membrane depolarisation that activates Cavs. We showed with a secretion assay that CGRP secretion can be induced by extracellular acidification in cultured rat DRG neurons. Amiloride and PcTx1 were not able to inhibit the secretion at acidic pH, but BCTC, a TRPV1 inhibitor was able to decrease the secretion induced by an extracellular acidification in our in vitro secretion assay. In conclusion, these results show that in DRG neurons a mild extracellular acidification can induce a calcium-dependent neuropeptide secretion. Even if our data show that ASICs can mediate an increase of intracellular Ca2+ concentration, this appears not to be sufficient to trigger neuropeptide secretion. TRPV1, a calcium channel whose activation induces a sustained current - in contrary of ASICs - played in our experimental conditions a predominant role in neurosecretion. In the second part of my thesis, we focused on the role of ASICs in neuropathic pain. We used the spared nerve injury (SNI) model which consists in a nerve injury that induces symptoms of neuropathic pain such as mechanical allodynia. We have previously shown that the SNI model modifies ASIC currents in dissociated rat DRG neurons. We hypothesized that ASICs could play a role in the development of mechanical allodynia. The SNI model was performed on ASIC1a, -2, and -3 knock-out mice and wild type littermates. We measured mechanical allodynia on these mice with calibrated von Frey filaments. There were no differences between the wild-type and the ASIC1, or ASIC2 knockout mice. ASIC3 null mice were less sensitive than wild type mice at 21 day after SNI, indicating a role for ASIC3. Finally, to investigate other possible roles of ASICs in the perception of the environment, we measured the baseline heat responses. We used two different models; the tail flick model and the hot plate model. ASIC1a null mice showed increased thermal allodynia behaviour in the hot plate test at three different temperatures (49, 52, 55°C) compared to their wild type littermates. On the contrary, ASIC2 null mice showed reduced thermal allodynia behaviour in the hot plate test compared to their wild type littermates at the three same temperatures. We conclude that ASIC1a and ASIC2 in mice can play a role in temperature sensing. It is currently not understood how ASICs are involved in temperature sensing and what the reason for the opposed effects in the two knockout models is.
Resumo:
The use of antimycotic drugs in fungal infections is based on the concept that they suppress fungal growth by a direct killing effect. However, amphotericin and nystatin have been reported to also trigger interleukin-1β (IL-1β) secretion in monocytes but the molecular mechanism is unknown. Here we report that only the polyene macrolides amphotericin B, nystatin, and natamycin but none of the tested azole antimycotic drugs induce significant IL-1β secretion in-vitro in dendritic cells isolated from C57BL/6 mouse bone marrow. IL-1β release depended on Toll-like receptor-mediated induction of pro-IL-1β as well as the NLRP3 inflammasome, its adaptor ASC, and caspase-1 for enzymatic cleavage of pro-IL-1β into its mature form. All three drugs induced potassium efflux from the cells as a known mechanism for NLRP3 activation but the P2X7 receptor was not required for this process. Natamycin-induced IL-1β secretion also involved phagocytosis, as cathepsin activation as described for crystal-induced IL-1β release. Together, the polyene macrolides amphotericin B, nystatin, and natamycin trigger IL-1β secretion by causing potassium efflux from which activates the NLRP3-ASC-caspase-1. We conclude that beyond their effects on fungal growth, these antifungal drugs directly activate the host's innate immunity.
Resumo:
Glucose homeostasis requires the tight regulation of glucose utilization by liver, muscle and white or brown fat, and glucose production and release in the blood by liver. The major goal of maintaining glycemia at ∼ 5 mM is to ensure a sufficient flux of glucose to the brain, which depends mostly on this nutrient as a source of metabolic energy. This homeostatic process is controlled by hormones, mainly glucagon and insulin, and by autonomic nervous activities that control the metabolic state of liver, muscle and fat tissue but also the secretory activity of the endocrine pancreas. Activation or inhibition of the sympathetic or parasympathetic branches of the autonomic nervous systems are controlled by glucose-excited or glucose-inhibited neurons located at different anatomical sites, mainly in the brainstem and the hypothalamus. Activation of these neurons by hyper- or hypoglycemia represents a critical aspect of the control of glucose homeostasis, and loss of glucose sensing by these cells as well as by pancreatic β-cells is a hallmark of type 2 diabetes. In this article, aspects of the brain-endocrine pancreas axis are reviewed, highlighting the importance of central glucose sensing in the control of counterregulation to hypoglycemia but also mentioning the role of the neural control in β-cell mass and function. Overall, the conclusions of these studies is that impaired glucose homeostasis, such as associated with type 2 diabetes, but also defective counterregulation to hypoglycemia, may be caused by initial defects in glucose sensing.
Resumo:
Store-operated Ca(2+) channels (SOCs) are voltage-independent Ca(2+) channels activated upon depletion of the endoplasmic reticulum Ca(2+) stores. Early studies suggest the contribution of such channels to Ca(2+) homeostasis in insulin-secreting pancreatic β-cells. However, their composition and contribution to glucose-stimulated insulin secretion (GSIS) remains unclear. In this study, endoplasmic reticulum Ca(2+) depletion triggered by acetylcholine (ACh) or thapsigargin stimulated the formation of a ternary complex composed of Orai1, TRPC1, and STIM1, the key proteins involved in the formation of SOCs. Ca(2+) imaging further revealed that Orai1 and TRPC1 are required to form functional SOCs and that these channels are activated by STIM1 in response to thapsigargin or ACh. Pharmacological SOCs inhibition or dominant negative blockade of Orai1 or TRPC1 using the specific pore mutants Orai1-E106D and TRPC1-F562A impaired GSIS in rat β-cells and fully blocked the potentiating effect of ACh on secretion. In contrast, pharmacological or dominant negative blockade of TRPC3 had no effect on extracellular Ca(2+) entry and GSIS. Finally, we observed that prolonged exposure to supraphysiological glucose concentration impaired SOCs function without altering the expression levels of STIM1, Orai1, and TRPC1. We conclude that Orai1 and TRPC1, which form SOCs regulated by STIM1, play a key role in the effect of ACh on GSIS, a process that may be impaired in type 2 diabetes.
Resumo:
Current explanatory models for binge eating in binge eating disorder (BED) mostly rely onmodels for bulimianervosa (BN), although research indicates different antecedents for binge eating in BED. This studyinvestigates antecedents and maintaining factors in terms of positive mood, negative mood and tension in asample of 22 women with BED using ecological momentary assessment over a 1-week. Values for negativemood were higher and those for positive mood lower during binge days compared with non-binge days.During binge days, negative mood and tension both strongly and significantly increased and positive moodstrongly and significantly decreased at the first binge episode, followed by a slight though significant, andlonger lasting decrease (negative mood, tension) or increase (positive mood) during a 4-h observation periodfollowing binge eating. Binge eating in BED seems to be triggered by an immediate breakdown of emotionregulation. There are no indications of an accumulation of negative mood triggering binge eating followed byimmediate reinforcing mechanisms in terms of substantial and stable improvement of mood as observed inBN. These differences implicate a further specification of etiological models and could serve as a basis fordeveloping new treatment approaches for BED.
Resumo:
Macrophage migration inhibitory factor (MIF), originally identified as a cytokine secreted by T lymphocytes, was found recently to be both a pituitary hormone and a mediator released by immune cells in response to glucocorticoid stimulation. We report here that the insulin-secreting beta cell of the islets of Langerhans expresses MIF and that its production is regulated by glucose in a time- and concentration-dependent manner. MIF and insulin colocalize by immunocytochemistry within the secretory granules of the pancreatic islet beta cells, and once released, MIF appears to regulate insulin release in an autocrine fashion. In perifusion studies performed with isolated rat islets, immunoneutralization of MIF reduced the first and second phase of the glucose-induced insulin secretion response by 39% and 31%, respectively. Conversely, exogenously added recombinant MIF was found to potentiate insulin release. Constitutive expression of MIF antisense RNA in the insulin-secreting INS-1 cell line inhibited MIF protein synthesis and decreased significantly glucose-induced insulin release. MIF is therefore a glucose-dependent, islet cell product that regulates insulin secretion in a positive manner and may play an important role in carbohydrate metabolism.
Resumo:
Summary : The hypothalamus represents less than 1 % of the total volume of the brain tissue, yet it plays a crucial role in endocrine regulations. Puberty is defined as a process leading to physical, sexual and psychosocial maturation. The hypothalamus is central to this process, via the activation of GnRH neurons. Pulsatile GnRH secretion, minimal during childhood, increases with the onset of puberty. The primary function of GnRH is to regulate the growth, development and function of testes in boys and ovaries in girls, by stimulating the pituitary gland secretion of luteinizing hormone (LH) and follicle-stimulating hormone (FSH). Several factors contribute to the timing of puberty, including sex and ethnicity, genetics, dietary intake and energy expenditure. Kisspeptins constitute a family of small peptides arising from the proteolytic cleavage of metastin, a peptide with 54 amino acids initially purified from human placenta. These kisspeptins were the subject of much attention following their discovery because of their antimetastatic properties, but it was more recently that their determining role in the reproductive function was demonstrated. It was shown that kisspeptins are ligands of a receptor, GPR54, whose natural inactivating mutation in humans, or knockout in the mouse, lead to infertility. GnRH neurons play a pivotal role in the central regulation of fertility. Kisspeptin greatly increases GnRH release and GnRH neuron firing activity, but the neurobiological mechanisms for these actions are unknown. Gprotein-coupled receptor 54, the receptor for kisspeptin, is expressed by GnRH neurons as well as other hypothalamic neurons, suggesting that both direct and indirect effects are possible. In the first part of my thesis, we investigated a possible connection between the acceleration of sexual development induced by leptin and hypothalamic metastin neurons. However, the data generated by our preliminary experiments confirmed that the commercially available antibodies are non-specific. This finding constituted a major drawback for our studies, which relied heavily upon the neuroanatomical study of the hypothalamic metastinergic pathways to elucidate their sensitivity to exogenous leptin. Therefore, we decided to postpone any further in vivo experiment until a better antibody becomes available, and focused on in vitro studies to better understand the mechanisms of action of kisspeptins in the modulation of the activity of GnRH neurons. We used two GnRH-expressing neuronal cell lines to investigate the cellular and molecular mechanisms of action of metastin in GnRH neurons. We demonstrated that kisspeptin induces an early activation of the MAP kinase intracellular signaling pathway in both cell lines, whereas the SAP/JNK or the Akt pathways were unaffected. Moreover, we found an increase in GnRH mRNA levels after 6h of metastin stimulation. Thus, we can conclude that kisspeptin regulates GnRH neurons both at the secretion and the gene expression levels. The MAPK pathway is the major pathway activated by metastin in GnRH expressing neurons. Taken together, these data provide the first mechanism of action of kisspeptin on GnRH neurons. Résumé : L'hypothalamus est une zone située au centre du cerveau, dont il représente moins de 1 du volume total. La puberté est la période de transition entre l'enfance et l'age adulte, qui s'accompagne de transformations somatiques, psychologiques, métaboliques et hormonales conduisant à la possibilité de procréer. La fonction principale de la GnRH est la régulation de la croissance, du développement et de la fonction des testicules chez les hommes, et des ovaires chez les femmes en stimulant la sécrétion de l'hormone lutéinisante (LH) et de l'hormone folliculostimulante (FSH) par la glande hypophysaire. Plusieurs facteurs contribuent au déclanchement de la puberté, y compris le sexe et l'appartenance ethnique, la génétique, l'apport alimentaire et la dépense énergétique. Les Kisspeptines constituent une famille de peptides résultant de la dissociation proteolytique de la métastine, un peptide de 54 acides aminés initialement purifié à partir de placenta humain. Ces kisspeptines ont fait l'objet de beaucoup d'attention à la suite de leur découverte en raison de leurs propriétés anti-metastatiques, et c'est plus récemment que leur rôle déterminant dans la fonction reproductive a été démontré. Les kisspeptines sont des ligands du récepteur GPR54, dont la mutation inactivatrice chez l'homme, ou le knockout chez la souris, conduisent à l'infertilité par hypogonadisme hypogonadotrope. Les neurones à GnRH jouent un rôle central dans le règlement des fonctions reproductrices et la kisspeptine stimule l'activité des neurones à GnRH et la libération de GnRH par ces neurones. Toutefois, les mécanismes neurobiologiques de ces actions ne sont pas connus. Dans la première partie de ma thèse, nous avons étudié le lien potentiel entre l'accélération du développement sexuel induite par la leptine et les neurones hypothalamiques à metastine. Les données générées dans cette première série d'expériences ont malheureusement confirmé que les anticorps anti-metastine disponibles dans le commerce sont aspécifiques. Ceci a constitué un inconvénient majeur pour nos études, qui devaient fortement s'appuyer sur l' étude neuroanatomique des neurones hypothalamiques à metastine pour évaluer leur sensibilité à la leptine exogène. Nous avons donc décidé de focaliser nos travaux sur une étude in vitro des mécanismes d'action de la kisspeptine pour moduler l'activité des neurones à GnRH. Nous avons utilisé deux lignées de cellules neuronales exprimant la GnRH pour étudier les mécanismes d'action cellulaires et moléculaires de la metastine dans des neurones. Nous avons ainsi pu démontrer que la kisspeptine induit une activation précoce de la voie f de signalisation de la MAP kinase dans les deux lignées cellulaires, alors que nous n'avons observé aucune activation de la voie de signalisation de la P13 Kinase et de la SAP/JNK. Nous avons en outre démontré une augmentation de l'expression de la GnRH par la stimulation avec la Kisspeptine. L'ensemble de ces données contribue à élucider le mécanisme d'action avec lequel la kisspeptine agit dans les neurones à GnRH, en démontrant un effet sur l'expression génique de la GnRH. Nous pouvons également conclure que la voie de la MAPK est la voie principale activée par la metastine dans les neurones exprimant la GnRH.
Resumo:
Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are incretins secreted in response to oral glucose ingestion by intestinal L and K cells, respectively. The molecular mechanisms responsible for intestinal cell glucose sensing are unknown but could be related to those described for beta-cells, brain and hepatoportal sensors. We determined the role of GLUT2, GLP-1 or GIP receptors in glucose-induced incretins secretion, in the corresponding knockout mice. GLP-1 secretion was reduced in all mutant mice, while GIP secretion did not require GLUT2. Intestinal GLP-1 content was reduced only in GIP and GLUT2 receptors knockout mice suggesting that this impairment could contribute to the phenotype. Intestinal GIP content was similar in all mice studied. Furthermore, the impaired incretins secretion was associated with a reduced glucose-stimulated insulin secretion and an impaired glucose tolerance in all mice. In conclusion, both incretins secretion depends on mechanisms involving their own receptors and GLP-1 further requires GLUT2.
Resumo:
RESUME GRAND PUBLICLe cerveau est composé de différents types cellulaires, dont les neurones et les astrocytes. Faute de moyens pour les observer, les astrocytes sont très longtemps restés dans l'ombre alors que les neurones, bénéficiant des outils ad hoc pour être stimulés et étudiés, ont fait l'objet de toutes les attentions. Le développement de l'imagerie cellulaire et des outils fluorescents ont permis d'observer ces cellules non électriquement excitables et d'obtenir des informations qui laissent penser que ces cellules sont loin d'être passives et participent activement au fonctionnement cérébral. Cette participation au fonctionnement cérébral se fait en partie par le biais de la libération de substances neuro-actives (appellées gliotransmetteurs) que les astrocytes libèrent à proximité des synapses permettant ainsi de moduler le fonctionnement neuronal. Cette libération de gliotransmetteurs est principalement causée par l'activité neuronale que les astrocytes sont capables de sentir. Néanmoins, nous savons encore peu de chose sur les propriétés précises de la libération des gliotransmetteurs. Comprendre les propriétés spatio-temporelles de cette libération est essentiel pour comprendre le mode de communication de ces cellules et leur implication dans la transmission de l'information cérébrale. En utilisant des outils fluorescents récemment développés et en combinant différentes techniques d'imagerie cellulaire, nous avons pu obtenir des informations très précises sur la libération de ces gliotransmetteurs par les astrocytes. Nous avons ainsi confirmé que cette libération était un processus très rapide et qu'elle était contrôlée par des augmentations de calcium locales et rapides. Nous avons également décrit une organisation complexe de la machinerie supportant la libération des gliotransmetteurs. Cette organisation complexe semble être à la base de la libération extrêmement rapide des gliotransmetteurs. Cette rapidité de libération et cette complexité structurelle semblent indiquer que les astrocytes sont des cellules particulièrement adaptées à une communication rapide et qu'elles peuvent, au même titre que les neurones dont elles seraient les partenaires légitimes, participer à la transmission et à l'intégration de l'information cérébrale.RESUMEDe petites vésicules, les « SLMVs » ou « Synaptic Like MicroVesicles », exprimant des transporteurs vésiculaires du glutamate (VGluTs) et libérant du glutamate par exocytose régulée, ont récemment été décrites dans les astrocytes en culture et in situ. Néanmoins, nous savons peu de chose sur les propriétés précises de la sécrétion de ces SLMVs. Contrairement aux neurones, le couplage stimulussécrétion des astrocytes n'est pas basé sur l'ouverture des canaux calciques membranaires mais nécessite l'intervention de seconds messagers et la libération du calcium par le reticulum endoplasmique (RE). Comprendre les propriétés spatio-temporelles de la sécrétion astrocytaire est essentiel pour comprendre le mode de communication de ces cellules et leur implication dans la transmission de l'information cérébrale. Nous avons utilisé des outils fluorescents récemment développés pour étudier le recyclage des vésicules synaptiques glutamatergiques comme les colorants styryles et la pHluorin afin de pouvoir suivre la sécrétion des SLMVs à l'échelle de la cellule mais également à l'échelle des évènements. L'utilisation combinée de l'épifluorescence et de la fluorescence à onde évanescente nous a permis d'obtenir une résolution temporelle et spatiale sans précédent. Ainsi avons-nous confirmé que la sécrétion régulée des astrocytes était un processus très rapide (de l'ordre de quelques centaines de millisecondes). Nous avons découvert que cette sécrétion est contrôlée par des augmentations de calcium locales et rapides. Nous avons également décrit des compartiments cytosoliques délimités par le RE à proximité de la membrane plasmique et contenant les SLMVs. Cette organisation semble être à la base du couplage rapide entre l'activation des GPCRs et la sécrétion. L'existence de compartiments subcellulaires indépendants permettant de contenir les messagers intracellulaires et de limiter leur diffusion semble compenser de manière efficace la nonexcitabilité électrique des astrocytes. Par ailleurs, l'existence des différents pools de vésicules recrutés séquentiellement et fusionnant selon des modalités distinctes ainsi que l'existence de mécanismes permettant le renouvellement de ces pools lors de la stimulation suggèrent que les astrocytes peuvent faire face à une stimulation soutenue de leur sécrétion. Ces données suggèrent que la libération de gliotransmetteurs par exocytose régulée n'est pas seulement une propriété des astrocytes en culture mais bien le résultat d'une forte spécialisation de ces cellules pour la sécrétion. La rapidité de cette sécrétion donne aux astrocytes toutes les compétences pour pouvoir intervenir de manière active dans la transmission et l'intégration de l'information.ABSTRACTRecently, astrocytic synaptic like microvesicles (SLMVs), that express vesicular glutamate transporters (VGluTs) and are able to release glutamate by Ca2+-dependent regulated exocytosis, have been described both in tissue and in cultured astrocytes. Nevertheless, little is known about the specific properties of regulated secretion in astrocytes. Important differences may exist between astrocytic and neuronal exocytosis, starting from the fact that stimulus-secretion coupling in astrocytes is voltage independent, mediated by G-protein-coupled receptors and the release of Ca2+ from internal stores. Elucidating the spatiotemporal properties of astrocytic exo-endocytosis is, therefore, of primary importance for understanding the mode of communication of these cells and their role in brain signaling. We took advantage of fluorescent tools recently developed for studying recycling of glutamatergic vesicles at synapses like styryl dyes and pHluorin in order to follow exocytosis and endocytosis of SLMVs at the level of the entire cell or at the level of single event. We combined epifluorescence and total internal reflection fluorescence imaging to investigate, with unprecedented temporal and spatial resolution, the events underlying the stimulus-secretion in astrocytes. We confirmed that exo-endocytosis process in astrocytes proceeds with a time course on the millisecond time scale. We discovered that SLMVs exocytosis is controlled by local and fast Ca2+ elevations; indeed submicrometer cytosolic compartments delimited by endoplasmic reticulum (ER) tubuli reaching beneath the plasma membrane and containing SLMVs. Such complex organization seems to support the fast stimulus-secretion coupling reported here. Independent subcellular compartments formed by ER, SLMVs and plasma membrane containing intracellular messengers and limiting their diffusion seem to compensate efficiently the non-electrical excitability of astrocytes. Moreover, the existence of two pools of SLMVs which are sequentially recruited suggests a compensatory mechanisms allowing the refill of SLMVs and supporting exocytosis process over a wide range of multiple stimuli. These data suggest that regulated secretion is not only a feature of cultured astrocytes but results from a strong specialization of these cells. The rapidity of secretion demonstrates that astrocytes are able to actively participate in brain information transmission and processing.
Resumo:
An acute attack of gout is a paradigm of acute sterile inflammation, as opposed to pyogenic inflammation. Recent studies suggest that the triggering of IL-1beta release from leucocytes lies at the heart of a cascade of processes that involves multiple cytokines and mediators. The NLRP3 inflammasome appears to have a specific role in this regard, but the biochemical events leading to its activation are still not well understood. We review the known mechanisms that underlie the inflammatory process triggered by urate crystals and suggest areas that require further research.
Resumo:
The liver secretes triglyceride-rich VLDLs, and the triglycerides in these particles are taken up by peripheral tissues, mainly heart, skeletal muscle, and adipose tissue. Blocking hepatic VLDL secretion interferes with the delivery of liver-derived triglycerides to peripheral tissues and results in an accumulation of triglycerides in the liver. However, it is unclear how interfering with hepatic triglyceride secretion affects adiposity, muscle triglyceride stores, and insulin sensitivity. To explore these issues, we examined mice that cannot secrete VLDL [due to the absence of microsomal triglyceride transfer protein (Mttp) in the liver]. These mice exhibit markedly reduced levels of apolipoprotein B-100 in the plasma, along with reduced levels of triglycerides in the plasma. Despite the low plasma triglyceride levels, triglyceride levels in skeletal muscle were unaffected. Adiposity and adipose tissue triglyceride synthesis rates were also normal, and body weight curves were unaffected. Even though the blockade of VLDL secretion caused hepatic steatosis accompanied by increased ceramides and diacylglycerols in the liver, the mice exhibited normal glucose tolerance and were sensitive to insulin at the whole-body level, as judged by hyperinsulinemic euglycemic clamp studies. Normal hepatic glucose production and insulin signaling were also maintained in the fatty liver induced by Mttp deletion. Thus, blocking VLDL secretion causes hepatic steatosis without insulin resistance, and there is little effect on muscle triglyceride stores or adiposity
Resumo:
BACKGROUND: Multiple interventions were made to optimize the medication process in our intensive care unit (ICU). 1 Transcriptions from the medical order form to the administration plan were eliminated by merging both into a single document; 2 the new form was built in a logical sequence and was highly structured to promote completeness and standardization of information; 3 frequently used drug names, approved units, and fixed routes were pre-printed; 4 physicians and nurses were trained with regard to the correct use of the new form. This study was aimed at evaluating the impact of these interventions on clinically significant types of medication errors. METHODS: Eight types of medication errors were measured by a prospective chart review before and after the interventions in the ICU of a public tertiary care hospital. We used an interrupted time-series design to control the secular trends. RESULTS: Over 85 days, 9298 lines of drug prescription and/or administration to 294 patients, corresponding to 754 patient-days were collected and analysed for the three series before and three series following the intervention. Global error rate decreased from 4.95 to 2.14% (-56.8%, P < 0.001). CONCLUSIONS: The safety of the medication process in our ICU was improved by simple and inexpensive interventions. In addition to the optimization of the prescription writing process, the documentation of intravenous preparation, and the scheduling of administration, the elimination of the transcription in combination with the training of users contributed to reducing errors and carried an interesting potential to increase safety.