50 resultados para mud wedge
em Université de Lausanne, Switzerland
Resumo:
Chaotic deposits are frequently reported in the geological literature and are commonly interpreted as olistostromes or tectonic melanges. A chaotic complex in the Cenozoic succession of Monferrato (NW Italy) consists of interbedded mud breccia and burrowed silty clays that are pierced by sheared mud breccias and embed carbonate-cemented blocks. These may be represented by microcrystalline limestones or strongly cemented matrix-supported breccias locally containing remains of chemosymbiotic organisms (lucinid bivalves). Moreover, cylindrical concretions, up to 15 cm in diameter and 1 m long, occur in the chaotic complex and crosscut bedding planes at high angles. The cement of all these lithified portions is mainly dolomite characterized by low delta(13)C values (from -10.3 to -23parts per thousand PDB) and delta(18)O values up to + 7parts per thousand PDB. The delta(13)C values testify to precipitation of carbonates induced by microbial oxidation of methane, whereas the markedly positive delta(18)C signature, ubiquitous in the cylindrical concretions, is the evidence for the presence and destabilization of gas hydrates. The studied section provides a well-exposed example of the geological record of the birth, life, and death of a mud volcano. Unsheared, soft mud breccias represent mud flows along the flanks of the volcano, whereas sheared mud breccias are the result of the injection of unconsolidated overpressured fine-grained sediments, both taking place during ``eruptive'' phases. They were followed by more quiet stages of hemipelagic sedimentation, burrowing, and CH4 seeping. The cylindrical concretions represent the first described ancient example of the chimneys observed in present-day mud-volcano settings. They are the remnants of a cold-seep plumbing network that crosscut the mud volcano edifice. The chimneys were the pathway for the expulsion toward the sea floor of gas- and sediment-charged fluids likely originated from destabilization of methane gas hydrates. The association of mud breccias and methane-derived carbonates may not be due to mass gravity flows but can be primary and, therefore, is a diagnostic criterion for recognizing chaotic deposits due to mud volcano activity in the geological record.
Resumo:
Determining the relative roles of vicariance and selection in restricting gene flow between populations is of central importance to the evolutionary process of population divergence and speciation. Here we use molecular and morphological data to contrast the effect of isolation (by mountains and geographical distance) with that of ecological factors (altitudinal gradients) in promoting differentiation in the wedge-billed woodcreeper, Glyphorynchus spirurus, a tropical forest bird, in Ecuador. Tarsus length and beak size increased relative to body size with altitude on both sides of the Andes, and were correlated with the amount of moss on tree trunks, suggesting the role of selection in driving adaptive divergence. In contrast, molecular data revealed a considerable degree of admixture along these altitudinal gradients, suggesting that adaptive divergence in morphological traits has occurred in the presence of gene flow. As suggested by mitochondrial DNA sequence data, the Andes act as a barrier to gene flow between ancient subspecific lineages. Genome-wide amplified fragment length polymorphism markers reflected more recent patterns of gene flow and revealed fine-scale patterns of population differentiation that were not detectable with mitochondrial DNA, including the differentiation of isolated coastal populations west of the Andes. Our results support the predominant role of geographical isolation in driving genetic differentiation in G. spirurus, yet suggest the role of selection in driving parallel morphological divergence along ecological gradients.
Resumo:
Acute cardiovascular dysfunction occurs perioperatively in more than 20% of cardiosurgical patients, yet current acute heart failure (HF) classification is not applicable to this period. Indicators of major perioperative risk include unstable coronary syndromes, decompensated HF, significant arrhythmias and valvular disease. Clinical risk factors include history of heart disease, compensated HF, cerebrovascular disease, presence of diabetes mellitus, renal insufficiency and high-risk surgery. EuroSCORE reliably predicts perioperative cardiovascular alteration in patients aged less than 80 years. Preoperative B-type natriuretic peptide level is an additional risk stratification factor. Aggressively preserving heart function during cardiosurgery is a major goal. Volatile anaesthetics and levosimendan seem to be promising cardioprotective agents, but large trials are still needed to assess the best cardioprotective agent(s) and optimal protocol(s). The aim of monitoring is early detection and assessment of mechanisms of perioperative cardiovascular dysfunction. Ideally, volume status should be assessed by 'dynamic' measurement of haemodynamic parameters. Assess heart function first by echocardiography, then using a pulmonary artery catheter (especially in right heart dysfunction). If volaemia and heart function are in the normal range, cardiovascular dysfunction is very likely related to vascular dysfunction. In treating myocardial dysfunction, consider the following options, either alone or in combination: low-to-moderate doses of dobutamine and epinephrine, milrinone or levosimendan. In vasoplegia-induced hypotension, use norepinephrine to maintain adequate perfusion pressure. Exclude hypovolaemia in patients under vasopressors, through repeated volume assessments. Optimal perioperative use of inotropes/vasopressors in cardiosurgery remains controversial, and further large multinational studies are needed. Cardiosurgical perioperative classification of cardiac impairment should be based on time of occurrence (precardiotomy, failure to wean, postcardiotomy) and haemodynamic severity of the patient's condition (crash and burn, deteriorating fast, stable but inotrope dependent). In heart dysfunction with suspected coronary hypoperfusion, an intra-aortic balloon pump is highly recommended. A ventricular assist device should be considered before end organ dysfunction becomes evident. Extra-corporeal membrane oxygenation is an elegant solution as a bridge to recovery and/or decision making. This paper offers practical recommendations for management of perioperative HF in cardiosurgery based on European experts' opinion. It also emphasizes the need for large surveys and studies to assess the optimal way to manage perioperative HF in cardiac surgery.
Resumo:
There are some striking similarities and some differences between the seismic reflection sections recorded across the fold and thrust belts of the southeast Canadian Cordillera, Quebec-Maine Appalachians and Swiss Alps. In the fold and thrust belts of all three mountain ranges, seismic reflection surveys have yielded high-quality images of. (1) nappes (thin thrust sheets) stacked on top of ancient continental margins; (2) ramp anticlines in the hanging walls of faults that have ramp-flat or listric geometries; (3) back thrusts and back folds that developed during the terminal phases of orogeny; and (4) tectonic wedges and regional decollements. A principal result of the Cordilleran and Appalachian deep crustal studies has been the recognition of master decollements along which continental margin strata have been transported long distances, whereas a principal result of the Swiss Alpine deep crustal program has been the identification of the Adriatic indenter, a crustal-scale wedge that caused delamination of the European lithosphere. Significant crustal roots are observed beneath the fold and thrust belts of the Alps, southeast Canadian Cordillera and parts of the southern Appalachians, but such structures beneath the northern Appalachians have probably been removed by post-orogenic collapse and/or crustal attenuation associated with the Mesozoic opening of the Atlantic Ocean.
Resumo:
South Peak is a 7-Mm3 potentially unstable rock mass located adjacent to the 1903 Frank Slide on Turtle Mountain, Alberta. This paper presents three-dimensional numerical rock slope stability models and compares them with a previous conceptual slope instability model based on discontinuity surfaces identified using an airborne LiDAR digital elevation model (DEM). Rock mass conditions at South Peak are described using the Geological Strength Index and point load tests, whilst the mean discontinuity set orientations and characteristics are based on approximately 500 field measurements. A kinematic analysis was first conducted to evaluate probable simple discontinuity-controlled failure modes. The potential for wedge failure was further assessed by considering the orientation of wedge intersections over the airborne LiDAR DEM and through a limit equilibrium combination analysis. Block theory was used to evaluate the finiteness and removability of blocks in the rock mass. Finally, the complex interaction between discontinuity sets and the topography within South Peak was investigated through three-dimensional distinct element models using the code 3DEC. The influence of individual discontinuity sets, scale effects, friction angle and the persistence along the discontinuity surfaces on the slope stability conditions were all investigated using this code.
Resumo:
AbstractBreast cancer is one of the most common cancers affecting one in eight women during their lives. Survival rates have increased steadily thanks to early diagnosis with mammography screening and more efficient treatment strategies. Post-operative radiation therapy is a standard of care in the management of breast cancer and has been shown to reduce efficiently both local recurrence rate and breast cancer mortality. Radiation therapy is however associated with some late effects for long-term survivors. Radiation-induced secondary cancer is a relatively rare but severe late effect of radiation therapy. Currently, radiotherapy plans are essentially optimized to maximize tumor control and minimize late deterministic effects (tissue reactions) that are mainly associated with high doses (» 1 Gy). With improved cure rates and new radiation therapy technologies, it is also important to evaluate and minimize secondary cancer risks for different treatment techniques. This is a particularly challenging task due to the large uncertainties in the dose-response relationship.In contrast with late deterministic effects, secondary cancers may be associated with much lower doses and therefore out-of-field doses (also called peripheral doses) that are typically inferior to 1 Gy need to be determined accurately. Out-of-field doses result from patient scatter and head scatter from the treatment unit. These doses are particularly challenging to compute and we characterized it by Monte Carlo (MC) calculation. A detailed MC model of the Siemens Primus linear accelerator has been thoroughly validated with measurements. We investigated the accuracy of such a model for retrospective dosimetry in epidemiological studies on secondary cancers. Considering that patients in such large studies could be treated on a variety of machines, we assessed the uncertainty in reconstructed peripheral dose due to the variability of peripheral dose among various linac geometries. For large open fields (> 10x10 cm2), the uncertainty would be less than 50%, but for small fields and wedged fields the uncertainty in reconstructed dose could rise up to a factor of 10. It was concluded that such a model could be used for conventional treatments using large open fields only.The MC model of the Siemens Primus linac was then used to compare out-of-field doses for different treatment techniques in a female whole-body CT-based phantom. Current techniques such as conformai wedged-based radiotherapy and hybrid IMRT were investigated and compared to older two-dimensional radiotherapy techniques. MC doses were also compared to those of a commercial Treatment Planning System (TPS). While the TPS is routinely used to determine the dose to the contralateral breast and the ipsilateral lung which are mostly out of the treatment fields, we have shown that these doses may be highly inaccurate depending on the treatment technique investigated. MC shows that hybrid IMRT is dosimetrically similar to three-dimensional wedge-based radiotherapy within the field, but offers substantially reduced doses to out-of-field healthy organs.Finally, many different approaches to risk estimations extracted from the literature were applied to the calculated MC dose distribution. Absolute risks varied substantially as did the ratio of risk between two treatment techniques, reflecting the large uncertainties involved with current risk models. Despite all these uncertainties, the hybrid IMRT investigated resulted in systematically lower cancer risks than any of the other treatment techniques. More epidemiological studies with accurate dosimetry are required in the future to construct robust risk models. In the meantime, any treatment strategy that reduces out-of-field doses to healthy organs should be investigated. Electron radiotherapy might offer interesting possibilities with this regard.RésuméLe cancer du sein affecte une femme sur huit au cours de sa vie. Grâce au dépistage précoce et à des thérapies de plus en plus efficaces, le taux de guérison a augmenté au cours du temps. La radiothérapie postopératoire joue un rôle important dans le traitement du cancer du sein en réduisant le taux de récidive et la mortalité. Malheureusement, la radiothérapie peut aussi induire des toxicités tardives chez les patients guéris. En particulier, les cancers secondaires radio-induits sont une complication rare mais sévère de la radiothérapie. En routine clinique, les plans de radiothérapie sont essentiellement optimisées pour un contrôle local le plus élevé possible tout en minimisant les réactions tissulaires tardives qui sont essentiellement associées avec des hautes doses (» 1 Gy). Toutefois, avec l'introduction de différentes nouvelles techniques et avec l'augmentation des taux de survie, il devient impératif d'évaluer et de minimiser les risques de cancer secondaire pour différentes techniques de traitement. Une telle évaluation du risque est une tâche ardue étant donné les nombreuses incertitudes liées à la relation dose-risque.Contrairement aux effets tissulaires, les cancers secondaires peuvent aussi être induits par des basses doses dans des organes qui se trouvent hors des champs d'irradiation. Ces organes reçoivent des doses périphériques typiquement inférieures à 1 Gy qui résultent du diffusé du patient et du diffusé de l'accélérateur. Ces doses sont difficiles à calculer précisément, mais les algorithmes Monte Carlo (MC) permettent de les estimer avec une bonne précision. Un modèle MC détaillé de l'accélérateur Primus de Siemens a été élaboré et validé avec des mesures. La précision de ce modèle a également été déterminée pour la reconstruction de dose en épidémiologie. Si on considère que les patients inclus dans de larges cohortes sont traités sur une variété de machines, l'incertitude dans la reconstruction de dose périphérique a été étudiée en fonction de la variabilité de la dose périphérique pour différents types d'accélérateurs. Pour de grands champs (> 10x10 cm ), l'incertitude est inférieure à 50%, mais pour de petits champs et des champs filtrés, l'incertitude de la dose peut monter jusqu'à un facteur 10. En conclusion, un tel modèle ne peut être utilisé que pour les traitements conventionnels utilisant des grands champs.Le modèle MC de l'accélérateur Primus a été utilisé ensuite pour déterminer la dose périphérique pour différentes techniques dans un fantôme corps entier basé sur des coupes CT d'une patiente. Les techniques actuelles utilisant des champs filtrés ou encore l'IMRT hybride ont été étudiées et comparées par rapport aux techniques plus anciennes. Les doses calculées par MC ont été comparées à celles obtenues d'un logiciel de planification commercial (TPS). Alors que le TPS est utilisé en routine pour déterminer la dose au sein contralatéral et au poumon ipsilatéral qui sont principalement hors des faisceaux, nous avons montré que ces doses peuvent être plus ou moins précises selon la technTque étudiée. Les calculs MC montrent que la technique IMRT est dosimétriquement équivalente à celle basée sur des champs filtrés à l'intérieur des champs de traitement, mais offre une réduction importante de la dose aux organes périphériques.Finalement différents modèles de risque ont été étudiés sur la base des distributions de dose calculées par MC. Les risques absolus et le rapport des risques entre deux techniques de traitement varient grandement, ce qui reflète les grandes incertitudes liées aux différents modèles de risque. Malgré ces incertitudes, on a pu montrer que la technique IMRT offrait une réduction du risque systématique par rapport aux autres techniques. En attendant des données épidémiologiques supplémentaires sur la relation dose-risque, toute technique offrant une réduction des doses périphériques aux organes sains mérite d'être étudiée. La radiothérapie avec des électrons offre à ce titre des possibilités intéressantes.
Resumo:
On December 4th 2007, a 3-Mm3 landslide occurred along the northwestern shore of Chehalis Lake. The initiation zone is located at the intersection of the main valley slope and the northern sidewall of a prominent gully. The slope failure caused a displacement wave that ran up to 38 m on the opposite shore of the lake. The landslide is temporally associated with a rain-on-snow meteorological event which is thought to have triggered it. This paper describes the Chehalis Lake landslide and presents a comparison of discontinuity orientation datasets obtained using three techniques: field measurements, terrestrial photogrammetric 3D models and an airborne LiDAR digital elevation model to describe the orientation and characteristics of the five discontinuity sets present. The discontinuity orientation data are used to perform kinematic, surface wedge limit equilibrium and three-dimensional distinct element analyses. The kinematic and surface wedge analyses suggest that the location of the slope failure (intersection of the valley slope and a gully wall) has facilitated the development of the unstable rock mass which initiated as a planar sliding failure. Results from the three-dimensional distinct element analyses suggest that the presence, orientation and high persistence of a discontinuity set dipping obliquely to the slope were critical to the development of the landslide and led to a failure mechanism dominated by planar sliding. The three-dimensional distinct element modelling also suggests that the presence of a steeply dipping discontinuity set striking perpendicular to the slope and associated with a fault exerted a significant control on the volume and extent of the failed rock mass but not on the overall stability of the slope.
Resumo:
The significance of the Brianconnais domain in the Alpine orogen is reviewed in the light of data concerning its collision with the active Adriatic margin and the passive Helvetic margin. The Brianconnais which formerly belonged to the Iberian plate, was located on the northern margin of the Alpine Tethys (Liguro-Piemont ocean) since its opening in the early-Middle Jurassic. Together with the Iberian plate the Brianconnais terrane was separated from the European plate in the Late Jurassic-Early Cretaceous, following the northern Atlantic, Bay of Biscay, Valais ocean opening. This was accompanied by the onset of subduction along the northern margin of Adria and the closure of the Alpine Tethys. Stratigraphic and metamorphic data regarding this subduction and the geohistory of the Brianconnais allows the scenario of subduction-obduction processes during the Late Cretaceous-early Tertiary in the eastern and western Alps to be specified. HP-LT metamorphism record a long-lasting history of oceanic subduction-accretion, followed in the Middle Eocene by the incorporation of the Brianconnais as an exotic terrane into the accretionary prism. Middle to Late Eocene cooling ages of the Brianconnais basement and the presence of pelagic, anorogenic sedimentation lasting until the Middle Eocene on the Brianconnais preclude any sort of collision before that time between this domain and the active Adria margin or the Helvetic margin. This is confirmed by plate reconstructions constrained by magnetic anomalies in the Atlantic domain. Only a small percentage of the former Brianconnais domain was obducted, most of the crust and lithospheric roots were subducted. This applies also to domains formerly belonging to the southern Alpine Tethys margin (Austroalpine-inner Carpathian domain). It is proposed that there was a single Palaeogene subduction zone responsible for the Alpine orogen formation (from northern Spain to the East Carpathians), with the exception of a short-lived Late Cretaceous partial closure of the Valais ocean. Subduction in the western Tethyan domain originated during the closure of the Meliata ocean during the Jurassic incorporating the Austroalpine-Carpathian domain as terranes during the Cretaceous. The subduction zone propagated into the northern margin of Adria and then to the northern margin of the Iberian plate, where it gave birth to the Pyrenean-Provencal orogenic belt. This implies the absence of a separated Cretaceous subduction zone within the Austro-Carpathian Penninic ocean. Collision of Iberia with Europe forced the subduction to jump to the SE margin of Iberia in the Eocene, creating the Apenninic orogenic wedge and inverting the vergence of subduction from south- to north-directed. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
The objective of this work is to present a multitechnique approach to define the geometry, the kinematics, and the failure mechanism of a retrogressive large landslide (upper part of the La Valette landslide, South French Alps) by the combination of airborne and terrestrial laser scanning data and ground-based seismic tomography data. The advantage of combining different methods is to constrain the geometrical and failure mechanism models by integrating different sources of information. Because of an important point density at the ground surface (4. 1 points m?2), a small laser footprint (0.09 m) and an accurate three-dimensional positioning (0.07 m), airborne laser scanning data are adapted as a source of information to analyze morphological structures at the surface. Seismic tomography surveys (P-wave and S-wave velocities) may highlight the presence of low-seismic-velocity zones that characterize the presence of dense fracture networks at the subsurface. The surface displacements measured from the terrestrial laser scanning data over a period of 2 years (May 2008?May 2010) allow one to quantify the landslide activity at the direct vicinity of the identified discontinuities. An important subsidence of the crown area with an average subsidence rate of 3.07 m?year?1 is determined. The displacement directions indicate that the retrogression is controlled structurally by the preexisting discontinuities. A conceptual structural model is proposed to explain the failure mechanism and the retrogressive evolution of the main scarp. Uphill, the crown area is affected by planar sliding included in a deeper wedge failure system constrained by two preexisting fractures. Downhill, the landslide body acts as a buttress for the upper part. Consequently, the progression of the landslide body downhill allows the development of dip-slope failures, and coherent blocks start sliding along planar discontinuities. The volume of the failed mass in the crown area is estimated at 500,000 m3 with the sloping local base level method.
Resumo:
Atrial natriuretic peptides (ANP) exert vasodilating and natriuretic actions. The present study was undertaken to test the effect of low dose infusions of synthetic ANP on hemodynamic and humoral variables of patients with severe heart failure. Eight patients, aged 26 to 71 years, with severe congestive heart failure due to ischemic heart disease or idiopathic dilated cardiomyopathy were included in the study. Synthetic human (3-28) ANP was infused at doses ranging from 0.5 to 2 micrograms/min for up to 3 h. Pulmonary capillary wedge pressure fell from 24 +/- 1 to 16 +/- 2 mm Hg (mean +/- SEM) (p less than 0.01) and cardiac index tended to rise from 2 +/- 0.2 to 2.3 +/- 0.2 L/min/m2 (NS), while blood pressure and heart rate did not change. One patient experienced a marked drop in pulmonary capillary wedge and arterial blood pressure that necessitated the administration of saline. ANP infusion did not alter plasma renin activity or plasma aldosterone, norepinephrine, or vasopressin levels. It decreased plasma epinephrine levels from 0.472 +/- 0.077 to 0.267 +/- 0.024 nmol/L (p less than 0.05). Plasma ANP levels were markedly elevated in all patients before initiating the infusion. They had no predictive value for the hemodynamic response to exogenous ANP. No correlation was observed between the hemodynamic effects of ANP and those induced by the subsequently administered converting enzyme inhibitor captopril, which seemed to improve cardiac function more consistently.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
Background: The RCP is a 14 French collapsable percutaneous cardiovascular support device positioned in the descending part of the thoracic aorta via the femoral artery. A 10 patient first in man study demonstrated device safety and significant improvement in renal function among high risk PCI patients. We now report haemodynamic and renal efficacy in patients with ADHF.Methods: Prospective non randomised study seeking to recruit 20 patients with ADHF with a need for inotropic or mechanical circulatory support with: i) EF < 30% ii)Cardiac index(CI) < 2.2 L / min / m2 Outcome measures included: 1) Cardiac index (CI) 2) Pulmonary Capillary Wedge Pressure (PCWP) 3) Urine output / serum creatinine 4) Vascular / device complications 5) 30 day mortalityResults: INTERIM ANALYSIS (n=12) The mean age of the study group was 64 years, with a mean baseline creatinine of 193 umol/L, eGFR 38 ml/min. The intended RCP treatment period was 24 hours. During RCP treatment there was a significant mean reduction of PCWP at 4 hours of 17% (25 to 21 mmHg p=0.04). Mean CI increased at 12 hours by 11%, though not reaching significance (1.78 to 1.96 L/min/m2 p=0.08). RCP insertion prompted substantial diuresis. Urine output tripled over the first 12 hours compared to baseline (55 ml/hr vs 213 ml/hr p=0.03). This was associated with significantly improved renal function, a 28% reduction in serum creatinine at 12 hours (193 to 151 umol/L p=0.003), and a increase in eGFR from 38 ml/min to 50 ml/min (p=0.0007). 2 patients previously refused cardiac transplantation were reassessed and successfully transplanted within 9 months of RCP treatment on the basis of demonstrable renal reversibility. There were no vascular or device complications. There were 2 deaths at 30 days, one from multi-organ failure and sepsis, and one from intractable heart failure - neither were device related.Conclusion: RCP support in ADHF patients was associated with improved haemodynamics, and an improvement in renal function. The Reitan Catheter Pump may have a role in providing percutaneous cardiovascular and renal support in the acutely decompensated cardiac patient, and may have a role in suggesting renal reversibility in potential cardiac transplant patients. Further data will be reported at recruitment completion.
Resumo:
The Early Jurassic dinosaur site of Toundoute which yielded the basal sauropod Tazoudasaurus naimi is examined in the light of its stratigraphic, sedimentological and palaeoenvironmental context. A thin succession of Early Liassic marine carbonates (probably Hettangian-Sinemurian in age) is continuously overlain by continental beds with dinosaurs. These latter are assumed to be of Middle to Late Liassic age. The continental deposits include a large part of volcanoclastics, different from the Triassic basalts. The Jurassic volcanoclastics originated from an unknown but obviously close eruption centre. The continental sediments (channels and flood plain) were deposited under tropical climate conditions with alternating humid and dry episodes. The bones occur as isolated or partly articulated elements (parts of carcasses). The two bone-beds are related to typical mud-flows. This type of transport protected the bones from erosion, and favoured their burying and fossilization.