186 resultados para motion sensing
em Université de Lausanne, Switzerland
Resumo:
PURPOSE: Respiratory motion correction remains a challenge in coronary magnetic resonance imaging (MRI) and current techniques, such as navigator gating, suffer from sub-optimal scan efficiency and ease-of-use. To overcome these limitations, an image-based self-navigation technique is proposed that uses "sub-images" and compressed sensing (CS) to obtain translational motion correction in 2D. The method was preliminarily implemented as a 2D technique and tested for feasibility for targeted coronary imaging. METHODS: During a 2D segmented radial k-space data acquisition, heavily undersampled sub-images were reconstructed from the readouts collected during each cardiac cycle. These sub-images may then be used for respiratory self-navigation. Alternatively, a CS reconstruction may be used to create these sub-images, so as to partially compensate for the heavy undersampling. Both approaches were quantitatively assessed using simulations and in vivo studies, and the resulting self-navigation strategies were then compared to conventional navigator gating. RESULTS: Sub-images reconstructed using CS showed a lower artifact level than sub-images reconstructed without CS. As a result, the final image quality was significantly better when using CS-assisted self-navigation as opposed to the non-CS approach. Moreover, while both self-navigation techniques led to a 69% scan time reduction (as compared to navigator gating), there was no significant difference in image quality between the CS-assisted self-navigation technique and conventional navigator gating, despite the significant decrease in scan time. CONCLUSIONS: CS-assisted self-navigation using 2D translational motion correction demonstrated feasibility of producing coronary MRA data with image quality comparable to that obtained with conventional navigator gating, and does so without the use of additional acquisitions or motion modeling, while still allowing for 100% scan efficiency and an improved ease-of-use. In conclusion, compressed sensing may become a critical adjunct for 2D translational motion correction in free-breathing cardiac imaging with high spatial resolution. An expansion to modern 3D approaches is now warranted.
Resumo:
Gait analysis methods to estimate spatiotemporal measures, based on two, three or four gyroscopes attached on lower limbs have been discussed in the literature. The most common approach to reduce the number of sensing units is to simplify the underlying biomechanical gait model. In this study, we propose a novel method based on prediction of movements of thighs from movements of shanks. Datasets from three previous studies were used. Data from the first study (ten healthy subjects and ten with Parkinson's disease) were used to develop and calibrate a system with only two gyroscopes attached on shanks. Data from two other studies (36 subjects with hip replacement, seven subjects with coxarthrosis, and eight control subjects) were used for comparison with the other methods and for assessment of error compared to a motion capture system. Results show that the error of estimation of stride length compared to motion capture with the system with four gyroscopes and our new method based on two gyroscopes was close ( -0.8 ±6.6 versus 3.8 ±6.6 cm). An alternative with three sensing units did not show better results (error: -0.2 ±8.4 cm). Finally, a fourth that also used two units but with a simpler gait model had the highest bias compared to the reference (error: -25.6 ±7.6 cm). We concluded that it is feasible to estimate movements of thighs from movements of shanks to reduce number of needed sensing units from 4 to 2 in context of ambulatory gait analysis.
Resumo:
L'imagerie par résonance magnétique (IRM) peut fournir aux cardiologues des informations diagnostiques importantes sur l'état de la maladie de l'artère coronarienne dans les patients. Le défi majeur pour l'IRM cardiaque est de gérer toutes les sources de mouvement qui peuvent affecter la qualité des images en réduisant l'information diagnostique. Cette thèse a donc comme but de développer des nouvelles techniques d'acquisitions des images IRM, en changeant les techniques de compensation du mouvement, pour en augmenter l'efficacité, la flexibilité, la robustesse et pour obtenir plus d'information sur le tissu et plus d'information temporelle. Les techniques proposées favorisent donc l'avancement de l'imagerie des coronaires dans une direction plus maniable et multi-usage qui peut facilement être transférée dans l'environnement clinique. La première partie de la thèse s'est concentrée sur l'étude du mouvement des artères coronariennes sur des patients en utilisant la techniques d'imagerie standard (rayons x), pour mesurer la précision avec laquelle les artères coronariennes retournent dans la même position battement après battement (repositionnement des coronaires). Nous avons découvert qu'il y a des intervalles dans le cycle cardiaque, tôt dans la systole et à moitié de la diastole, où le repositionnement des coronaires est au minimum. En réponse nous avons développé une nouvelle séquence d'acquisition (T2-post) capable d'acquérir les données aussi tôt dans la systole. Cette séquence a été testée sur des volontaires sains et on a pu constater que la qualité de visualisation des artère coronariennes est égale à celle obtenue avec les techniques standard. De plus, le rapport signal sur bruit fourni par la séquence d'acquisition proposée est supérieur à celui obtenu avec les techniques d'imagerie standard. La deuxième partie de la thèse a exploré un paradigme d'acquisition des images cardiaques complètement nouveau pour l'imagerie du coeur entier. La technique proposée dans ce travail acquiert les données sans arrêt (free-running) au lieu d'être synchronisée avec le mouvement cardiaque. De cette façon, l'efficacité de la séquence d'acquisition est augmentée de manière significative et les images produites représentent le coeur entier dans toutes les phases cardiaques (quatre dimensions, 4D). Par ailleurs, l'auto-navigation de la respiration permet d'effectuer cette acquisition en respiration libre. Cette technologie rend possible de visualiser et évaluer l'anatomie du coeur et de ses vaisseaux ainsi que la fonction cardiaque en quatre dimensions et avec une très haute résolution spatiale et temporelle, sans la nécessité d'injecter un moyen de contraste. Le pas essentiel qui a permis le développement de cette technique est l'utilisation d'une trajectoire d'acquisition radiale 3D basée sur l'angle d'or. Avec cette trajectoire, il est possible d'acquérir continûment les données d'espace k, puis de réordonner les données et choisir les paramètres temporel des images 4D a posteriori. L'acquisition 4D a été aussi couplée avec un algorithme de reconstructions itératif (compressed sensing) qui permet d'augmenter la résolution temporelle tout en augmentant la qualité des images. Grâce aux images 4D, il est possible maintenant de visualiser les artères coronariennes entières dans chaque phase du cycle cardiaque et, avec les mêmes données, de visualiser et mesurer la fonction cardiaque. La qualité des artères coronariennes dans les images 4D est la même que dans les images obtenues avec une acquisition 3D standard, acquise en diastole Par ailleurs, les valeurs de fonction cardiaque mesurées au moyen des images 4D concorde avec les valeurs obtenues avec les images 2D standard. Finalement, dans la dernière partie de la thèse une technique d'acquisition a temps d'écho ultra-court (UTE) a été développée pour la visualisation in vivo des calcifications des artères coronariennes. Des études récentes ont démontré que les acquisitions UTE permettent de visualiser les calcifications dans des plaques athérosclérotiques ex vivo. Cepandent le mouvement du coeur a entravé jusqu'à maintenant l'utilisation des techniques UTE in vivo. Pour résoudre ce problème nous avons développé une séquence d'acquisition UTE avec trajectoire radiale 3D et l'avons testée sur des volontaires. La technique proposée utilise une auto-navigation 3D pour corriger le mouvement respiratoire et est synchronisée avec l'ECG. Trois échos sont acquis pour extraire le signal de la calcification avec des composants au T2 très court tout en permettant de séparer le signal de la graisse depuis le signal de l'eau. Les résultats sont encore préliminaires mais on peut affirmer que la technique développé peut potentiellement montrer les calcifications des artères coronariennes in vivo. En conclusion, ce travail de thèse présente trois nouvelles techniques pour l'IRM du coeur entier capables d'améliorer la visualisation et la caractérisation de la maladie athérosclérotique des coronaires. Ces techniques fournissent des informations anatomiques et fonctionnelles en quatre dimensions et des informations sur la composition du tissu auparavant indisponibles. CORONARY artery magnetic resonance imaging (MRI) has the potential to provide the cardiologist with relevant diagnostic information relative to coronary artery disease of patients. The major challenge of cardiac MRI, though, is dealing with all sources of motions that can corrupt the images affecting the diagnostic information provided. The current thesis, thus, focused on the development of new MRI techniques that change the standard approach to cardiac motion compensation in order to increase the efficiency of cardioavscular MRI, to provide more flexibility and robustness, new temporal information and new tissue information. The proposed approaches help in advancing coronary magnetic resonance angiography (MRA) in the direction of an easy-to-use and multipurpose tool that can be translated to the clinical environment. The first part of the thesis focused on the study of coronary artery motion through gold standard imaging techniques (x-ray angiography) in patients, in order to measure the precision with which the coronary arteries assume the same position beat after beat (coronary artery repositioning). We learned that intervals with minimal coronary artery repositioning occur in peak systole and in mid diastole and we responded with a new pulse sequence (T2~post) that is able to provide peak-systolic imaging. Such a sequence was tested in healthy volunteers and, from the image quality comparison, we learned that the proposed approach provides coronary artery visualization and contrast-to-noise ratio (CNR) comparable with the standard acquisition approach, but with increased signal-to-noise ratio (SNR). The second part of the thesis explored a completely new paradigm for whole- heart cardiovascular MRI. The proposed techniques acquires the data continuously (free-running), instead of being triggered, thus increasing the efficiency of the acquisition and providing four dimensional images of the whole heart, while respiratory self navigation allows for the scan to be performed in free breathing. This enabling technology allows for anatomical and functional evaluation in four dimensions, with high spatial and temporal resolution and without the need for contrast agent injection. The enabling step is the use of a golden-angle based 3D radial trajectory, which allows for a continuous sampling of the k-space and a retrospective selection of the timing parameters of the reconstructed dataset. The free-running 4D acquisition was then combined with a compressed sensing reconstruction algorithm that further increases the temporal resolution of the 4D dataset, while at the same time increasing the overall image quality by removing undersampling artifacts. The obtained 4D images provide visualization of the whole coronary artery tree in each phases of the cardiac cycle and, at the same time, allow for the assessment of the cardiac function with a single free- breathing scan. The quality of the coronary arteries provided by the frames of the free-running 4D acquisition is in line with the one obtained with the standard ECG-triggered one, and the cardiac function evaluation matched the one measured with gold-standard stack of 2D cine approaches. Finally, the last part of the thesis focused on the development of ultrashort echo time (UTE) acquisition scheme for in vivo detection of calcification in the coronary arteries. Recent studies showed that UTE imaging allows for the coronary artery plaque calcification ex vivo, since it is able to detect the short T2 components of the calcification. The heart motion, though, prevented this technique from being applied in vivo. An ECG-triggered self-navigated 3D radial triple- echo UTE acquisition has then been developed and tested in healthy volunteers. The proposed sequence combines a 3D self-navigation approach with a 3D radial UTE acquisition enabling data collection during free breathing. Three echoes are simultaneously acquired to extract the short T2 components of the calcification while a water and fat separation technique allows for proper visualization of the coronary arteries. Even though the results are still preliminary, the proposed sequence showed great potential for the in vivo visualization of coronary artery calcification. In conclusion, the thesis presents three novel MRI approaches aimed at improved characterization and assessment of atherosclerotic coronary artery disease. These approaches provide new anatomical and functional information in four dimensions, and support tissue characterization for coronary artery plaques.
Resumo:
Purpose: To investigate the accuracy of 4 clinical instruments in the detection of glaucomatous damage. Methods: 102 eyes of 55 test subjects (Age mean = 66.5yrs, range = [39; 89]) underwent Heidelberg Retinal Tomography (HRTIII), (disc area<2.43); and standard automated perimetry (SAP) using Octopus (Dynamic); Pulsar (TOP); and Moorfields Motion Displacement Test (MDT) (ESTA strategy). Eyes were separated into three groups 1) Healthy (H): IOP<21mmHg and healthy discs (clinical examination), 39 subjects, 78 eyes; 2) Glaucoma suspect (GS): Suspicious discs (clinical examination), 12 subjects, 15 eyes; 3) Glaucoma (G): progressive structural or functional loss, 14 subjects, 20 eyes. Clinical diagnostic precision was examined using the cut-off associated with the p<5% normative limit of MD (Octopus/Pulsar), PTD (MDT) and MRA (HRT) analysis. The sensitivity, specificity and accuracy were calculated for each instrument. Results: See table Conclusions: Despite the advantage of defining glaucoma suspects using clinical optic disc examination, the HRT did not yield significantly higher accuracy than functional measures. HRT, MDT and Octopus SAP yielded higher accuracy than Pulsar perimetry, although results did not reach statistical significance. Further studies are required to investigate the structure-function correlations between these instruments.
Resumo:
Defining an efficient training set is one of the most delicate phases for the success of remote sensing image classification routines. The complexity of the problem, the limited temporal and financial resources, as well as the high intraclass variance can make an algorithm fail if it is trained with a suboptimal dataset. Active learning aims at building efficient training sets by iteratively improving the model performance through sampling. A user-defined heuristic ranks the unlabeled pixels according to a function of the uncertainty of their class membership and then the user is asked to provide labels for the most uncertain pixels. This paper reviews and tests the main families of active learning algorithms: committee, large margin, and posterior probability-based. For each of them, the most recent advances in the remote sensing community are discussed and some heuristics are detailed and tested. Several challenging remote sensing scenarios are considered, including very high spatial resolution and hyperspectral image classification. Finally, guidelines for choosing the good architecture are provided for new and/or unexperienced user.
Resumo:
INTRODUCTION: Intravoxel incoherent motion (IVIM) imaging is an MRI perfusion technique that uses a diffusion-weighted sequence with multiple b values and a bi-compartmental signal model to measure the so-called pseudo-diffusion of blood caused by its passage through the microvascular network. The goal of the current study was to assess the feasibility of IVIM perfusion fraction imaging in patients with acute stroke. METHODS: Images were collected in 17 patients with acute stroke. Exclusion criteria were onset of symptoms to imaging >5 days, hemorrhagic transformation, infratentorial lesions, small lesions <0.5 cm in minimal diameter and hemodynamic instability. IVIM imaging was performed at 3 T, using a standard spin-echo Stejskal-Tanner pulsed gradients diffusion-weighted sequence, using 16 b values from 0 to 900 s/mm(2). Image quality was assessed by two radiologists, and quantitative analysis was performed in regions of interest placed in the stroke area, defined by thresholding the apparent diffusion coefficient maps, as well as in the contralateral region. RESULTS: IVIM perfusion fraction maps showed an area of decreased perfusion fraction f in the region of decreased apparent diffusion coefficient. Quantitative analysis showed a statistically significant decrease in both IVIM perfusion fraction f (0.026 ± 0.019 vs. 0.056 ± 0.025, p = 2.2 · 10(-6)) and diffusion coefficient D compared with the contralateral side (3.9 ± 0.79 · 10(-4) vs. 7.5 ± 0.86 · 10(-4) mm(2)/s, p = 1.3 · 10(-20)). CONCLUSION: IVIM perfusion fraction imaging is feasible in acute stroke. IVIM perfusion fraction is significantly reduced in the visible infarct. Further studies should evaluate the potential for IVIM to predict clinical outcome and treatment response.
Resumo:
Image quality in magnetic resonance imaging (MRI) is considerably affected by motion. Therefore, motion is one of the most common sources of artifacts in contemporary cardiovascular MRI. Such artifacts in turn may easily lead to misinterpretations in the images and a subsequent loss in diagnostic quality. Hence, there is considerable research interest in strategies that help to overcome these limitations at minimal cost in time, spatial resolution, temporal resolution, and signal-to-noise ratio. This review summarizes and discusses the three principal sources of motion: the beating heart, the breathing lungs, and bulk patient movement. This is followed by a comprehensive overview of commonly used compensation strategies for these different types of motion. Finally, a summary and an outlook are provided.
Resumo:
This work explores a concept for motion detection in brain MR examinations using high channel-count RF coil arrays. It applies ultrashort (<100 μsec) free induction decay signals, making use of the knowledge that motion induces variations in these signals when compared to a reference free induction decay signal. As a proof-of-concept, the method was implemented in a standard structural MRI sequence. The stability of the free induction decay-signal was verified in phantom experiments. Human experiments demonstrated that the observed variations in the navigator data provide a sensitive measure for detection of relevant and common subject motion patterns. The proposed methodology provides a means to monitor subject motion throughout a MRI scan while causing little or no impact on the sequence timing and image contrast. It could hence complement available motion detection and correction methods, thus further reducing motion sensitivity in MR applications.
Resumo:
Functional imaging with intravoxel incoherent motion (IVIM) magnetic resonance imaging (MRI) is demonstrated. Images were acquired at 3 Tesla using a standard Stejskal-Tanner diffusion-weighted echo-planar imaging sequence with multiple b-values. Cerebro-spinal fluid signal, which is highly incoherent, was suppressed with an inversion recovery preparation pulse. IVIM microvascular perfusion parameters were calculated according to a two-compartment (vascular and non-vascular) diffusion model. The results obtained in 8 healthy human volunteers during visual stimulation are presented. The IVIM blood flow related parameter fD* increased 170% during stimulation in the visual cortex, and 70% in the underlying white matter.
Resumo:
Purpose: To evaluate the sensitivity of the perfusion parameters derived from Intravoxel Incoherent Motion (IVIM) MR imaging to hypercapnia-induced vasodilatation and hyperoxygenation-induced vasoconstriction in the human brain. Materials and Methods: This study was approved by the local ethics committee and informed consent was obtained from all participants. Images were acquired with a standard pulsed-gradient spin-echo sequence (Stejskal-Tanner) in a clinical 3-T system by using 16 b values ranging from 0 to 900 sec/mm(2). Seven healthy volunteers were examined while they inhaled four different gas mixtures known to modify brain perfusion (pure oxygen, ambient air, 5% CO(2) in ambient air, and 8% CO(2) in ambient air). Diffusion coefficient (D), pseudodiffusion coefficient (D*), perfusion fraction (f), and blood flow-related parameter (fD*) maps were calculated on the basis of the IVIM biexponential model, and the parametric maps were compared among the four different gas mixtures. Paired, one-tailed Student t tests were performed to assess for statistically significant differences. Results: Signal decay curves were biexponential in the brain parenchyma of all volunteers. When compared with inhaled ambient air, the IVIM perfusion parameters D*, f, and fD* increased as the concentration of inhaled CO(2) was increased (for the entire brain, P = .01 for f, D*, and fD* for CO(2) 5%; P = .02 for f, and P = .01 for D* and fD* for CO(2) 8%), and a trend toward a reduction was observed when participants inhaled pure oxygen (although P > .05). D remained globally stable. Conclusion: The IVIM perfusion parameters were reactive to hyperoxygenation-induced vasoconstriction and hypercapnia-induced vasodilatation. Accordingly, IVIM imaging was found to be a valid and promising method to quantify brain perfusion in humans. © RSNA, 2012.
Resumo:
In the recent years, kernel methods have revealed very powerful tools in many application domains in general and in remote sensing image classification in particular. The special characteristics of remote sensing images (high dimension, few labeled samples and different noise sources) are efficiently dealt with kernel machines. In this paper, we propose the use of structured output learning to improve remote sensing image classification based on kernels. Structured output learning is concerned with the design of machine learning algorithms that not only implement input-output mapping, but also take into account the relations between output labels, thus generalizing unstructured kernel methods. We analyze the framework and introduce it to the remote sensing community. Output similarity is here encoded into SVM classifiers by modifying the model loss function and the kernel function either independently or jointly. Experiments on a very high resolution (VHR) image classification problem shows promising results and opens a wide field of research with structured output kernel methods.