4 resultados para monosomy 4q
em Université de Lausanne, Switzerland
Resumo:
PURPOSE: Acute myeloid leukemia (AML) with inv(3)(q21q26.2)/t(3;3)(q21;q26.2) [inv(3)/t(3;3)] is recognized as a distinctive entity in the WHO classification. Risk assignment and clinical and genetic characterization of AML with chromosome 3q abnormalities other than inv(3)/t(3;3) remain largely unresolved. PATIENTS AND METHODS: Cytogenetics, molecular genetics, therapy response, and outcome analysis were performed in 6,515 newly diagnosed adult AML patients. Patients were treated on Dutch-Belgian Hemato-Oncology Cooperative Group/Swiss Group for Clinical Cancer Research (HOVON/SAKK; n = 3,501) and German-Austrian Acute Myeloid Leukemia Study Group (AMLSG; n = 3,014) protocols. EVI1 and MDS1/EVI1 expression was determined by real-time quantitative polymerase chain reaction. RESULTS: 3q abnormalities were detected in 4.4% of AML patients (288 of 6,515). Four distinct groups were defined: A: inv(3)/t(3;3), 32%; B: balanced t(3q26), 18%; C: balanced t(3q21), 7%; and D: other 3q abnormalities, 43%. Monosomy 7 was the most common additional aberration in groups (A), 66%; (B), 31%; and (D), 37%. N-RAS mutations and dissociate EVI1 versus MDS1/EVI1 overexpression were associated with inv(3)/t(3;3). Patients with inv(3)/t(3;3) and balanced t(3q21) at diagnosis presented with higher WBC and platelet counts. In multivariable analysis, only inv(3)/t(3;3), but not t(3q26) and t(3q21), predicted reduced relapse-free survival (hazard ratio [HR], 1.99; P < .001) and overall survival (HR, 1.4; P = .006). This adverse prognostic impact of inv(3)/t(3;3) was enhanced by additional monosomy 7. Group D 3q aberrant AML also had a poor outcome related to the coexistence of complex and/or monosomal karyotypes and cryptic inv(3)/t(3;3). CONCLUSION: Various categories of 3q abnormalities in AML can be distinguished according to their clinical, hematologic, and genetic features. AML with inv(3)/t(3;3) represents a distinctive subgroup with unfavorable prognosis.
Resumo:
PURPOSE: To investigate the prognostic value of various cytogenetic components of a complex karyotype in acute myeloid leukemia (AML). PATIENTS AND METHODS: Cytogenetics and overall survival (OS) were analyzed in 1,975 AML patients age 15 to 60 years. RESULTS: Besides AML with normal cytogenetics (CN) and core binding factor (CBF) abnormalities, we distinguished 733 patients with cytogenetic abnormalities. Among the latter subgroup, loss of a single chromosome (n = 109) conferred negative prognostic impact (4-year OS, 12%; poor outcome). Loss of chromosome 7 was most common, but outcome of AML patients with single monosomy -7 (n = 63; 4-year OS, 13%) and other single autosomal monosomies (n = 46; 4-year OS, 12%) did not differ. Structural chromosomal abnormalities influenced prognosis only in association with a single autosomal monosomy (4-year OS, 4% for very poor v 24% for poor). We derived a monosomal karyotype (MK) as a predictor for very poor prognosis of AML that refers to two or more distinct autosomal chromosome monosomies (n = 116; 4-year OS, 3%) or one single autosomal monosomy in the presence of structural abnormalities (n = 68; 4-year OS, 4%). In direct comparisons, MK provides significantly better prognostic prediction than the traditionally defined complex karyotype, which considers any three or more or five or more clonal cytogenetic abnormalities, and also than various individual specific cytogenetic abnormalities (eg, del[5q], inv[3]/t[3;3]) associated with very poor outcome. CONCLUSION: MK enables (in addition to CN and CBF) the prognostic classification of two new aggregates of cytogenetically abnormal AML, the unfavorable risk MK-negative category (4-year OS, 26% +/- 2%) and the highly unfavorable risk MK-positive category (4-year OS, 4% +/- 1%).
Resumo:
BACKGROUND: Primary ovarian insufficiency (POI) is defined as a primary ovarian defect characterized by absent menarche (primary amenorrhea), a decrease in the initial primordial follicle number, high follicle-stimulating hormone (FSH) levels and hypoestrogenism. Although the etiology of a majority of POI cases is not yet identified, several data suggest that POI has a strong genetic component. Conventional cytogenetic and molecular analyses have identified regions of the X chromosome that are associated with ovarian function, as well as POI candidate genes, such as FMR1 and DIAPH2. Here we describe a 10.5-year-old girl presenting with high FSH and luteinizing hormone (LH) levels, pathologic GH stimulation arginine and clonidine tests, short stature, pterygium, ovarian dysgenesis, hirsutism and POI. RESULTS: Cytogenetic analysis demonstrated a balanced reciprocal translocation between the q arms of chromosomes X and 1, with breakpoints falling in Xq21 and 1q41 bands. Molecular studies did not unravel any chromosome microdeletion/microduplication, and no XIST-mediated inactivation was found on the derivative chromosome 1. Interestingly, through immunofluorescence assays, we found that part of the Xq21q22 trait, translocated to chromosome 1q41, was late replicating and therefore possibly inactivated in 30 % metaphases both in lymphocytes and skin fibroblasts, in addition to a skewed 100 % inactivation of the normal X chromosome. These findings suggest that a dysregulation of gene expression might occur in this region. Two genes mapping to the Xq translocated region, namely DIAPH2 and FMR1, were found overexpressed if compared with controls. CONCLUSIONS: We report a case in which gonadal dysgenesis and POI are associated with over-expression of DIAPH2 gene and of FMR1 gene in wild type form. We hypothesize that this over-expression is possibly due to a phenomenon known as "chromosomal position effect", which accounts for gene expression variations depending on their localization within the nucleus. For the same effect a double mosaic inactivation of genes mapping to the Xq21-q22 region, demonstrated by immunofluorescence assays, may be the cause of a functional Xq partial monosomy leading to most Turner traits of the proband's phenotype.